Skip to main content

Advertisement

Log in

Comparison of mandibular trabecular structures between normal and diabetic rats: evaluation of spontaneous type 2 diabetes in a rat model

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objectives

To investigate the effect of diabetes on the trabecular structure of the mandible in an animal model of spontaneous diabetes mellitus.

Methods

Glucose tolerance tests were performed and the urine glucose level monitored in nine Goto–Kakizaki diabetic rats (DM group) and nine Wistar rats (control group) from their 8th to 81st weeks of life. Mandibular molar bone was resected and evaluated by peripheral quantitative computed tomography to analyze bone mineral density (BMD), cross-sectional morphology, and the bone strength index. Micro-computed tomography was performed to evaluate the three-dimensional structure of bone from the same site, including the alveolar crest level. The morphometric indices, connectivity index, and continuity index were also determined.

Results

The alveolar crest level did not significantly differ between the DM and control groups. Trabecular BMD was significantly decreased in the DM group compared with that in the control group, but there was no significant difference in the cortical BMD. Parameters indicating morphological changes and the Stress/Strain Index, an indication of bone strength, were significantly decreased in the DM group compared with those in the control group. Morphometric indices, the connectivity index, and the continuity index showed a coarser trabecular structure in the DM group than in the control group.

Conclusions

The diabetic condition has a significant effect on the mandibular trabecular structure, which may lead to deterioration in bone quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gunczler P, Lanes R, Paz-Martinez V, Martins R, Esaa S, Colmenares V. Decreased lumbar spine bone mass and low bone turnover in children and adolescents with insulin dependent diabetes mellitus followed longitudinally. J Pediatr Endocrinol Metab. 1998;11:413–9.

    Article  PubMed  Google Scholar 

  2. Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG. Osteopenia in insulin-dependent diabetes mellitus: prevalence and aspects of pathophysiology. J Endocrinol Invest. 2000;23:295–303.

    PubMed  Google Scholar 

  3. Inaba M, Okuno S, Kumeda Y, Yamakawa T, Ishimura E, Nishizawa Y. Increased incidence of vertebral fracture in older female hemodialyzed patients with type 2 diabetes mellitus. Calcif Tissue Int. 2005;76:256–60.

    Article  PubMed  Google Scholar 

  4. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86:32–8.

    Article  PubMed  Google Scholar 

  5. Rico H, Hernandez ER, Cabranes JA, Gomez-Castresana F. Suggestion of a deficient osteoblastic function in diabetes mellitus: the possible cause of osteopenia in diabetics. Calcif Tissue Int. 1989;45:71–3.

    Article  PubMed  Google Scholar 

  6. Löe H. Periodontal disease: the six complications of diabetes mellitus. Diabetes Care. 1993;16:329–34.

    PubMed  Google Scholar 

  7. Shlossman M, William C, Knowler WC, Pettitt DJ, Genco RJ, Saad MF. Type 2 diabetes mellitus and periodontal disease. J Am Dent Assoc. 1990;121:532–6.

    PubMed  Google Scholar 

  8. Emrich LJ, Shlossman M, Genco RJ. Periodontal disease in non-insulin-dependent diabetes mellitus. J Periodontol. 1991;62:123–31.

    Article  PubMed  Google Scholar 

  9. Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med. 1976;119:85–90.

    Article  PubMed  Google Scholar 

  10. Goto Y, Kakizaki M, Toyota T, Masaki N, Kitamura A, Yagihashi S. Spontaneous diabetes produced by repeated selective breeding of normal Wistar rats. Excerpta Medica ICS. 1976;413:703–10.

    Google Scholar 

  11. Ferretti JL. Peripheral quantitative computed tomography for evaluating structural and mechanical properties of small bone. In: An YH, Draughn RA, editors. Mechanical testing of bone and the bone-implant interface. Boca Raton: CRC; 2000. p. 390–2.

    Google Scholar 

  12. RATOC System Engineering Co. TRI/3D-BON: basic operation manual. Tokyo: RATOC System Engineering; 2002.

  13. Parfitt AM, Matthews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. J Clin Invest. 1983;72:1396–409.

    Article  PubMed  Google Scholar 

  14. Odgaard A. Three-dimensional methods fore quantification of cancellous bone architecture. Bone. 1997;20:315–28.

    Article  PubMed  Google Scholar 

  15. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4:3–11.

    Article  PubMed  Google Scholar 

  16. Garrahan NJ, Mellish RW, Compston JE. A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies. J Microsc. 1986;142:341–9.

    PubMed  Google Scholar 

  17. Croucher PI, Garrahan NJ, Compston JE. Assessment of cancellous bone structure: comparison of strut analysis, trabecular bone pattern factor, and marrow space star volume. J Bone Miner Res. 1996;11:955–61.

    Article  PubMed  Google Scholar 

  18. Ikuta A, Kumasaka S, Kashima I. Quantitative analysis using the star volume method applied to skeleton patterns extracted with a morphological filter. J Bone Miner Metab. 2000;18:271–7.

    Article  PubMed  Google Scholar 

  19. Kumasaka S, Kiyohara S, Takahashi T, Asai H, Kashima I. Morphologically extracted trabecular skeleton superimposed upon digital radiograph structure. J Bone Miner Metab. 2000;18:208–11.

    Article  PubMed  Google Scholar 

  20. Vesterby A, Gunndersen HJG, Melsen F. Star volume of marrow space and trabeculae of the first lumber vertebra: sampling efficiency and biological variation. Bone. 1989;10:7–13.

    Article  PubMed  Google Scholar 

  21. Nakamura K, Matsubara M, Asai H, Koyama A, Fujikawa T, Kashima I. Mathematical morphology for extraction of bone trabecular pattern: preliminary investigation of quantitative analysis using the star volume. J Jpn Soc Bone Morphom. 1999;9:45–51.

    Google Scholar 

  22. Albright F, Reinfenstein EC. Parathyroid glands and metabolic bone disease. In: Selected studies. Baltimore: Williams & Wilkins; 1948. p. 150.

  23. Tuominen JT, Impivaara O, Puukka P, Rönnemaa T. Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care. 1999;22:1196–200.

    Article  PubMed  Google Scholar 

  24. McNair P. Bone mineral metabolism in human type 1 (insulin dependent) diabetes mellitus. Dan Med Bull. 1988;35:109–21.

    PubMed  Google Scholar 

  25. Isaia G, Bodrato L, Carlevatto V, Mussetta M, Salamano G, Molinatti GM. Osteoporosis in type II diabetes. Acta Diabetol Lat. 1987;24:305–10.

    Article  PubMed  Google Scholar 

  26. Gregorio F, Cristallini S, Santeusanio F, Filipponi P, Fumelli P. Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes? Diabetes Res Clin Pract. 1994;23:43–54.

    Article  PubMed  Google Scholar 

  27. Kwon DJ, Kim JH, Chung KW, Kim JH, Lee JW, Kim SP. Bone mineral density of the spine using dual energy X-ray absorptiometry in patients with non-insulin-dependent diabetes mellitus. J Obstet Gynaecol Res. 1996;22:157–62.

    PubMed  Google Scholar 

  28. Wakasugi M, Wakao R, Tawata M, Gan N, Koizumi K, Onaya T. Bone mineral density measured by dual energy X-ray absorptiometry in patients with non-insulin-dependent diabetes mellitus. Bone. 1993;14:29–33.

    Article  PubMed  Google Scholar 

  29. Sosa M, Dominguez M, Navarro MC, Segarra MC, Hernández D, de Pablos P. Bone mineral metabolism is normal in non-insulin-dependent diabetes mellitus. J Diabetes Complicat. 1996;10:201–5.

    Article  PubMed  Google Scholar 

  30. Van Daele PL, Stolk RP, Burger H, Algra D, Grobbee DE, Hofman A. Bone density in non-insulin-dependent diabetes mellitus: the Rotterdam study. Ann Intern Med. 1995;122:409–14.

    PubMed  Google Scholar 

  31. Rishaug U, Birkeland KI, Falch JA, Vaaler S. Bone mass in non-insulin-dependent diabetes mellitus. Scand J Clin Lab Invest. 1995;55:257–62.

    Article  PubMed  Google Scholar 

  32. Stolk RP, Van Daele PL, Pols HA, Burger H, Hofman A, Birkenhäger JC. Hyperinsulinemia and bone mineral density in an elderly population: the Rotterdam study. Bone. 1996;18:545–9.

    Article  PubMed  Google Scholar 

  33. Anderson BG, Smith AH, Arnim SS, Orten A. Changes in molar teeth and their supporting structures of rats following extraction on the upper right first and second molars. Yale J Biol Med. 1936;9:189–93.

    PubMed  Google Scholar 

  34. Cimasoni G, Becks H. Growth study of the rat mandible as related to function. Angle Orthod. 1963;33:27–34.

    Google Scholar 

  35. Taguchi A, Tanimoto K, Suei Y, Otani K, Wada T. Oral signs as indicators of possible osteoporosis in elderly women. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80:612–6.

    Article  PubMed  Google Scholar 

  36. Bollen AM, Taguchi A, Hujoel PP, Hollender LG. Case-control study on self- reported osteoporotic fractures and mandibular cortical bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90:518–24.

    Article  PubMed  Google Scholar 

  37. Jowitt N, MacFalkane T, Devlin H, Klemetti E, Horner K. The reproducibility of the mandibular cortical index. Dentomaxillofac Radiol. 1999;28:141–4.

    Article  PubMed  Google Scholar 

  38. Asai H, Kozai Y, Matsumoto Y, Kawamata R, Kumasaka S, Kashima I. Radiological morphometric analysis of the mandibular bone structure after ovariectomy in mature cynomolgus monkeys. Oral Sci Int. 2005;2:54–63.

    Google Scholar 

  39. NIH Consensus Development Panel. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–95.

    Article  Google Scholar 

  40. Shimamoto M, Kozai Y, Matsumoto Y, Kawamata R, Sakurai T, Kashima I. Radiological morphometric analysis for the trabecular bone structure of mandibular condyle after ovariectomy in mature cynomolgus monkeys. Oral Sci Int. 2007;4:86–96.

    Google Scholar 

  41. Nicodemus KK, Folsom AR. Iowa Women’s Health Study. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24:1192–7.

    Article  PubMed  Google Scholar 

  42. Brown SA, Sharpless JL. Osteoporosis: an under-appreciated complication of diabetes. Clin Diabetes. 2004;22:10–20.

    Article  Google Scholar 

  43. Heath H 3rd, Melton LJ 3rd, Chu CP. Diabetes mellitus and risk of skeletal fracture. N Engl J Med. 1980;303:567.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Kawamata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onoyama, K., Kawamata, R., Kozai, Y. et al. Comparison of mandibular trabecular structures between normal and diabetic rats: evaluation of spontaneous type 2 diabetes in a rat model. Oral Radiol 27, 35–42 (2011). https://doi.org/10.1007/s11282-011-0065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-011-0065-x

Keywords

Navigation