Skip to main content

Advertisement

Log in

Changes in the fractal dimension on pre- and post-implant panoramic radiographs

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aim of this study was to assess the changes in the fractal dimension before and after implant placement. The study also examined the possibility of using fractal analysis as a prognostic indicator for implant success.

Methods

Pre- and post-implant panoramic radiographs of 33 patients who underwent implant treatment were archived. Square regions of interest were cropped, and a fractal analysis was performed using the box-counting method of ImageJ 1.42 software.

Results

The Wilcoxon test revealed a significant difference between the pre- and post-implant values. This difference could indicate an increased bony microstructure around the implant, thereby aiding the prediction of implant success.

Conclusions

The increase in the fractal analysis values suggests increased bony microstructure in the peri-implant sites after implant placement. Consensus on the technique of evaluating fractal analysis and further experimental studies could render fractal analysis a prognostic indicator for implant success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mandelbrot BB. The fractal geometry of nature. 1st ed. New York: WH Freeman; 1983.

    Google Scholar 

  2. Weibel ER. Fractal geometry: a design principle for living organisms. Am J Physiol. 1991;261:L361–9.

    PubMed  Google Scholar 

  3. Badwell RSS. The application of fractal dimensions to temporomandibular joint sounds. Comput Biol Med. 1993;23:1–4.

    Article  Google Scholar 

  4. Buckland-Wright JC, Lynch JA, Rymer J, Fogelman I. Fractal signature analysis of macroradiographs measures trabecular organization in lumbar vertebrae of postmenopausal women. Calcif Tissue Int. 1994;54:106–12.

    Article  PubMed  Google Scholar 

  5. Lynch JA, Hawkes DJ, Buckland-Wright JC. Analysis of texture in macroradiographs of osteoarthritic knees using the fractal signature. Phys Med Biol. 1991;36:709–22.

    Article  PubMed  Google Scholar 

  6. Buckland-Wright JC, Lynch JA, Bird C. Microfocal techniques in quantitative radiography: measurement of cancellous bone organization. Br J Rheumatol. 1996;35(Suppl 3):18–22.

    PubMed  Google Scholar 

  7. Cowin SC. A resolution restriction for Wolff’s law of trabecular architecture. Bull Hosp Jt Dis Orthop Inst. 1989;49:205–12.

    PubMed  Google Scholar 

  8. Rubin CT, Mcleod KJ, Bain SD. Functional strains and cortical bone adaptation: epigenic assurance of skeletal integrity. J Biomech. 1990;23(Suppl 1):43–54.

    Article  PubMed  Google Scholar 

  9. Khosrovi PM, Kahn AJ, Majumdar HK, Genant CA. Fractal analysis of dental radiographs to assess trabecular bone structure. J Dent Res. 1995;74(Spec. Issue):173 (abstr. 1294).

    Google Scholar 

  10. Ruttiman UE, Ship JA. The use of fractal geometry to quantitate bone structure from radiographs. J Dent Res. 1990;69(Spec. Issue):287 (abstr. 1431).

    Google Scholar 

  11. Van Der Stelt PF, Geraets WGM. Use of the fractal dimension to describe the trabecular pattern of osteoporosis. J Dent Res. 1990;69(Spec. Issue):287 (abstr. 1430).

    Google Scholar 

  12. Otis LL, Hong JSH, Tuncay OC. Bone structure effect on root resorption. Orthod Craniofacial Res. 2004;7:165–77.

    Article  Google Scholar 

  13. Heo MS, Park KS, Lee SS, Choi SC, Koak JY, Heo SJ, et al. Fractal analysis of mandibular bony healing after orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94:763–7.

    Article  PubMed  Google Scholar 

  14. Yasar F, Akgünlü F. The differences in panoramic mandibular indices and fractal dimension between patients with and without spinal osteoporosis. Dentomaxillofac Radiol. 2006;35:1–9.

    Article  PubMed  Google Scholar 

  15. Prouteau S, Ducher G, Nanyan P, Lemineur G, Benhamou L, Courteix D. Fractal analysis of bone texture: a screening tool for stress fracture risk? Eur J Clin Invest. 2004;34:137–42.

    Article  PubMed  Google Scholar 

  16. Lee DH, Ku Y, Rhyu IC, Hong JU, Lee CW, Heo MS, et al. A clinical study of alveolar bone quality using the fractal dimension and the implant stability quotient. J Periodontal Implant Sci. 2010;40:19–24.

    Article  PubMed  Google Scholar 

  17. Branemark P, Zarb GA, Alberkstsson T. Tissue integrated prostheses: osseointegration in clinical dentistry. 1st ed. Chicago: Quintessence Publishing; 1985.

    Google Scholar 

  18. Lundahl T, Ohely WS, Kay SM, Siffert R. Fractional brownian motion: a maximum likelihood estimator and its application to imaging texture. IEEE Trans Med Imaging. 1986;5:152–61.

    Article  PubMed  Google Scholar 

  19. White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:628–35.

    Article  PubMed  Google Scholar 

  20. Chen SK, Ovir T, Lin CH, Leu LJ, Cho BH, Hollender L. Digital imaging analysis with mathematical morphology and fractal dimension for evaluation of periapical lesions following endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:467–72.

    Article  PubMed  Google Scholar 

  21. Lynch JA, Hawkes DJ, Buckland-Wright JC. A robust and accurate method for calculating the fractal signature of texture in macroradiographs of osteoarthritic knees. Med Inform. 1991;16:241–51.

    Article  Google Scholar 

  22. Fortin C, Kumaresan R, Ohley W, Hoffer S. Fractal dimension in the analysis of medical images. IEEE Eng Med Biol Mag. 1992;11:65–71.

    Article  Google Scholar 

  23. Ruttiman UE, Webber RL, Hazelrig JB. Fractal dimension from radiographs of periodontal alveolar bone. A possible diagnostic indicator of osteoporosis. Oral Surg Oral Med Oral Pathol. 1992;74:98–110.

    Article  Google Scholar 

  24. Gatiz D, Ehrlich J, Kohen Y, Bab I. Effect of occlusal (mechanical) stimulus on bone remodelling in rat condyle. J Oral Pathol. 1987;16:395–8.

    Google Scholar 

  25. Feik SA, Storey E, Ellender G. Stress induced periosteal changes. Br J Exp Pathol. 1987;68:803–13.

    PubMed  Google Scholar 

  26. Rubin CT, Lanyon LC. Regulation of bone formation by applied dynamic loads. Calcif Tiss Int. 1985;37:411–7.

    Article  Google Scholar 

  27. Cowin SC, Sadegh AM, Luo GM. An evolutionary Wolff’s law for trabecular architecture. J Biomech Eng. 1992;114:129–36.

    Article  PubMed  Google Scholar 

  28. Weinans H, Huiskes R, Grootenboer HJ. The behavior of adaptive bone-remodeling simulation models. J Biomech. 1992;25:1425–41.

    Article  PubMed  Google Scholar 

  29. Chambers TJ, Evans M, Gardner TN, Turner-Smith A, Chow JW. Induction of bone formation in rat tail vertebrae by mechanical loading. Bone Miner. 1993;20:167–78.

    Article  PubMed  Google Scholar 

  30. Caldwell CB, Stapleton SJ, Holdsworth DW, Jong RA, Weiser WJ, Cooke G, et al. Characterization of mammographic parenchymal pattern by fractal dimension. Phys Med Biol. 1990;35:235–47.

    Article  PubMed  Google Scholar 

  31. Aldell R, Lekholm U, Rockler B, Brånemark PI. A 15 year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981;10:387–416.

    Article  Google Scholar 

  32. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence on marginal bone loss and fixture success in the Branemark implants system. Clin Oral Implants Res. 1992;3:104–11.

    Article  PubMed  Google Scholar 

  33. Albrektsson T, Zarb GA, Worthington P, Eriksson AR. A positive correlation between occlusal trauma and periimplant bone loss: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1:11–25.

    PubMed  Google Scholar 

  34. Shrout MK, Potter BJ, Hildebold CF. The effect of image variations on fractal dimension calculations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84:96–100.

    Article  PubMed  Google Scholar 

  35. Shrout MK, Potter BJ, Hildebold CF. The effect of image variations on fractal dimension calculations of fractal index. Dentomaxillofac Radiol. 1997;26:295–8.

    Article  PubMed  Google Scholar 

  36. Majumdar S, Weinstien RS, Prasad RR. Application of fractal geometry techniques to the study of trabecular bone. Med Phys. 1993;20:1611–9.

    Article  PubMed  Google Scholar 

  37. Wilding RJC, Slabbert JCG, Kathree H, Owen CP, Crombie K. The use of fractal analysis to reveal remodeling in human alveolar bone following the placement of dental implants. Arch Oral Biol. 1995;40:61–72.

    Article  PubMed  Google Scholar 

  38. Bollen AM, Taguchi A, Hugoel PP, Hollender LG. Fractal dimension on dental radiographs. Dentomaxillofac Radiol. 2001;30:270–5.

    Article  PubMed  Google Scholar 

  39. Shrout MK, Hildebold CF, Potter BJ, Comer RW. Comparison of 5 protocols based on their abilities to use data extracted from digitized clinical radiographs to discriminate between patients with gingivitis and periodontitis. J Periodontol. 2000;71:1750–5.

    Article  PubMed  Google Scholar 

  40. Schepers HE, van Beek JHGM, Bassingthwaighte JB. Four methods to estimate the fractal dimension from self-affine signals. IEEE Eng Med Biol Mag. 1992;11:57–64.

    Article  Google Scholar 

  41. Law AN, Bollen AM, Chen SK. Detecting osteoporosis using dental radiographs: a comparison of 4 methods. J Am Dent Assoc. 1996;127:1734–42.

    PubMed  Google Scholar 

  42. Yasar F, Akgünlü F. Fractal dimension and lacunarity analysis of dental radiographs. Dentomaxillofac Radiol. 2005;34:261–7.

    Article  PubMed  Google Scholar 

  43. Ergün S, Saraçoglu A, Güneri P, Ozpinar B. Application of fractal analysis in hyperparathyroidism. Dentomaxillofac Radiol. 2009;38:281–8.

    Article  PubMed  Google Scholar 

  44. Nair MK, Seyedain A, Webber RL, Nair UP, Piesco NP, Agarwal S, et al. Fractal analyses of osseous healing using tuned aperture computed tomography images. Eur Radiol. 2001;11:1510–5.

    Article  PubMed  Google Scholar 

  45. Southard TE, Southard KA, Jakobsen JR, Hillis SL, Najin CA. Fractal dimension in radiographic analysis of alveolar bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:569–76.

    Article  PubMed  Google Scholar 

  46. Caligiuri P, Giger ML, Favus M. Multifractal radiographic analysis of osteoporosis. Med Phys. 1994;21:503–8.

    Article  PubMed  Google Scholar 

  47. Misch CE, Qu M, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implication of dental implant treatment planning and surgical placement. J Oral Maxillofac Surg. 1999;57:700–6.

    Article  PubMed  Google Scholar 

  48. Thomsen JS, Ebbesen EN, Mosekilde L. Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. Bone. 1998;22:153–63.

    Article  PubMed  Google Scholar 

  49. Roberts WE, Turley PK, Brezniak N, Fielder PJ. Implants: bone physiology and metabolism. CDA J. 1987;15:54–61.

    PubMed  Google Scholar 

  50. Taylor TD. Osteogenesis of the mandible associated with implant reconstruction: a patient report. Int J Oral Maxillofac Implants. 1989;4:227–31.

    PubMed  Google Scholar 

  51. von Wowers N, Harder F, Hjorting-Hansen E, Gotfrendsen K. ITI implants with overdentures: a prevention of bone loss in edentulous mandible? Int J Oral Maxillofac Implants. 1990;5:135–9.

    Google Scholar 

  52. Shrout MK, Roberson B, Potter BJ, Mailhot JM, Hildebolt CF. A comparison of 2 patient populations using fractal analysis. J Periodontol. 1998;69:9–13.

    PubMed  Google Scholar 

  53. Misch CE, Wang HL, Palti A. The International Congress of Oral Implantologists consensus congress on implant success. Italy: Padua; 2007.

    Google Scholar 

  54. Misch CE. Divisions of available bone in implant dentistry. Int J Oral Implantol. 1990;7:9–17.

    PubMed  Google Scholar 

  55. Trisi P, Rao W. Bone classification: clinical-histomorphometric comparison. Clin Oral Implants Res. 1999;10:1–7.

    Article  PubMed  Google Scholar 

  56. Friberg B, Sennerby L, Roos J, Johansson P, Strid CG, Lekholm U. Evaluation of bone density using cutting resistance measurements and microradiography: an in vitro study in pig ribs. Clin Oral Implants Res. 1995;6:164–71.

    Article  PubMed  Google Scholar 

  57. Rosenthal DI, Ganott MA, Wyshak G, Slovik DM, Doppelt SH, Neer RM. Quantitative computed tomography for spinal density measurement: factors affecting precision. Invest Radiol. 1985;20:306–10.

    Article  PubMed  Google Scholar 

  58. Norton MR, Gamble C. Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res. 2001;12:79–84.

    Article  PubMed  Google Scholar 

  59. Pouilles JM, Tremollieres F, Todorovsky N, Ribot C. Precision and sensitivity of dual-energy X-ray absorptiometry in spinal osteoporosis. J Bone Miner Res. 1991;6:997–1002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following for their contributions to this study and manuscript: Dr. Kiran Kelkar, private implantologist; Dr. Neha Patil, resident, Oral and Maxillofacial Radiology, Nair Hospital Dental College; and, Dr. Abhiram Kasbe, Associate Professor, Preventive and Social Medicine, BYL Nair Hospital and TN Medical College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubh Sansare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansare, K., Singh, D. & Karjodkar, F. Changes in the fractal dimension on pre- and post-implant panoramic radiographs. Oral Radiol 28, 15–23 (2012). https://doi.org/10.1007/s11282-011-0075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-011-0075-8

Keywords

Navigation