Skip to main content
Log in

Ectonucleotidases in the kidney

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Members of all four families of ectonucleotidases, namely ectonucleoside triphosphate diphosphohydrolases (NTPDases), ectonucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-5′-nucleotidase and alkaline phosphatases, have been identified in the renal vasculature and/or tubular structures. In rats and mice, NTPDase1, which hydrolyses ATP through to AMP, is prominent throughout most of the renal vasculature and is also present in the thin ascending limb of Henle and medullary collecting duct. NTPDase2 and NTPDase3, which both prefer ATP over ADP as a substrate, are found in most nephron segments beyond the proximal tubule. NPPs catalyse not only the hydrolysis of ATP and ADP, but also of diadenosine polyphosphates. NPP1 has been identified in proximal and distal tubules of the mouse, while NPP3 is expressed in the rat glomerulus and pars recta, but not in more distal segments. Ecto-5′-nucleotidase, which catalyses the conversion of AMP to adenosine, is found in apical membranes of rat proximal convoluted tubule and intercalated cells of the distal nephron, as well as in the peritubular space. Finally, an alkaline phosphatase, which can theoretically catalyse the entire hydrolysis chain from nucleoside triphosphate to nucleoside, has been identified in apical membranes of rat proximal tubules; however, this enzyme exhibits relatively high K m values for adenine nucleotides. Although information on renal ectonucleotidases is still incomplete, the enzymes’ varied distribution in the vasculature and along the nephron suggests that they can profoundly influence purinoceptor activity through the hydrolysis, and generation, of agonists of the various purinoceptor subtypes. This review provides an update on renal ectonucleotidases and speculates on the functional significance of these enzymes in terms of glomerular and tubular physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schwiebert EM, Kishore BK (2001) Extracellular nucleotide signaling along the renal epithelium. Am J Physiol Renal Physiol 280:F945–F963

    CAS  PubMed  Google Scholar 

  2. Vekaria RM, Unwin RJ, Shirley DG (2006) Intraluminal ATP concentrations in rat renal tubules. J Am Soc Nephrol 17:1841–1847

    Article  CAS  PubMed  Google Scholar 

  3. Lazarowski ER, Boucher RC, Harden TK (2000) Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations. J Biol Chem 275:31061–31068

    Article  CAS  PubMed  Google Scholar 

  4. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signaling cascade. Biochim Biophys Acta 1783:673–694

    Article  CAS  PubMed  Google Scholar 

  5. Kimura N, Shimada N, Nomura K, Watanabe K (1990) Isolation and characterization of a cDNA clone encoding rat nucleoside diphosphate kinase. J Biol Chem 265:15744–15749

    CAS  PubMed  Google Scholar 

  6. Cole BR, Hays AE, Boylan JG, Burch HB, Lowry OH (1982) Distribution of enzymes of adenylate and guanylate nucleotide metabolism in rat nephron. Am J Physiol 243:F349–F355

    CAS  PubMed  Google Scholar 

  7. Praetorius HA, Leipziger J (2009) ATP release from non-excitable cells. Pur Sig in press

  8. Zimmermann H (2001) Ecto-nucleotidases. In: Abbracchio MP, Williams M (eds) Purinergic and pyrimidinergic signalling. Handbook of experimental pharmacology, vol 151. Springer-Verlag, Berlin, pp 209–250

    Google Scholar 

  9. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Nuanyn Schmiedebergs Arch Pharmacol 362:299–309

    Article  CAS  Google Scholar 

  10. Kukulski F, Lévesque SA, Lavoie EG et al (2005) Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Pur Sig 1:193–204

    Article  CAS  Google Scholar 

  11. Laliberté JF, Beaudoin AR (1983) Sequential hydrolysis of the gamma- and beta-phosphate groups of ATP by the ATP diphosphohydrolase from pig pancreas. Biochim Biophys Acta 742:9–15

    PubMed  Google Scholar 

  12. Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Pur Sig 2:409–430

    Article  CAS  Google Scholar 

  13. Bigonnesse F, Lévesque SA, Kukulski F et al (2004) Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-8. Biochemistry 43:5511–5519

    Article  CAS  PubMed  Google Scholar 

  14. Fausther M, Lecka J, Kukulski F et al (2007) Cloning, purification and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 292:G785–G795

    Article  CAS  PubMed  Google Scholar 

  15. Stefan C, Jansen S, Bollen M (2006) Modulation of purinergic signalling by NPP-type ectophosphodiesterases. Pur Sig 2:361–370

    Article  CAS  Google Scholar 

  16. Gijsbers R, Aoki J, Arai H, Bollen M (2003) The hydrolysis of lysophospholipids and nucleotides by autotaxin (NPP2) involves a single catalytic site. FEBS Lett 538:60–64

    Article  CAS  PubMed  Google Scholar 

  17. Lévesque SA, Lavoie EG, Lecka J et al (2007) Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases. Br J Pharmacol 152:141–150

    Article  PubMed  Google Scholar 

  18. Millán JL (2006) Alkaline phosphatases. Pur Sig 2:335–341

    Article  Google Scholar 

  19. Ohkubo S, Kimura J, Matsuoka I (2000) Ecto-alkaline phosphatase in NG108–15 cells: a key enzyme mediating P1 antagonist-sensitive ATP response. Br J Pharmacol 131:1667–1672

    Article  CAS  PubMed  Google Scholar 

  20. Picher M, Burch LH, Hirsh AJ et al (2003) Ecto 5'-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278:13468–13479

    Article  CAS  PubMed  Google Scholar 

  21. Sévigny J, Robson SC, Waelkens E et al (2000) Identification and characterization of a novel hepatic canalicular ATP diphosphohydrolase. J Biol Chem 275:5640–5647

    Article  PubMed  Google Scholar 

  22. Kishore BK, Isaac J, Fausther M et al (2005) Expression of NTPDase1 and NTPDase2 in murine kidney: relevance to regulation of P2 receptor signaling. Am J Physiol Renal Physiol 288:F1032–F1043

    Article  CAS  PubMed  Google Scholar 

  23. Vekaria RM, Shirley DG, Sévigny J, Unwin RJ (2006) Immunolocalization of ectonucleotidases along the rat nephron. Am J Physiol Renal Physiol 290:F550–F560

    Article  CAS  PubMed  Google Scholar 

  24. Lemmens R, Kupers L, Sévigny J et al (2000) Purification, characterization, and localization of an ATP diphosphohydrolase in porcine kidney. Am J Physiol Renal Physiol 278:F978–F988

    CAS  PubMed  Google Scholar 

  25. Harahap AR, Goding JW (1988) Distribution of the murine plasma cell antigen PC-1 in non-lymphoid tissues. J Immunol 141:2317–2320

    CAS  PubMed  Google Scholar 

  26. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Pur Sig 2:351–360

    Article  CAS  Google Scholar 

  27. Gandhi R, Le Hir M, Kaissling B (1990) Immunolocalization of ecto-5′-nucleotidase in the kidney by a monoclonal antibody. Histochemistry 95:165–174

    Article  CAS  PubMed  Google Scholar 

  28. Le Hir M, Kaissling B (1989) Distribution of 5′-nucleotidase in the renal interstitium of the rat. Cell Tissue Res 258:177–182

    Article  PubMed  Google Scholar 

  29. Le Hir M, Kaissling B (1993) Distribution and regulation of renal ecto-5′-nucleotidase: implications for physiological functions of adenosine. Am J Physiol Renal Fluid Electrolyte Physiol 264:F377–F387

    Google Scholar 

  30. Beliveau R, Brunette MG, Strevey J (1983) Characterization of phosphate binding by alkaline phosphatase in rat kidney brush border membrane. Pflügers Arch 398:227–232

    Article  CAS  PubMed  Google Scholar 

  31. Kaczmarek E, Koziak K, Sévigny J et al (1996) Identification and characterization of CD39 vascular ATP diphosphohydrolase. J Biol Chem 271:33116–33122

    Article  CAS  PubMed  Google Scholar 

  32. Enjyoji K, Sévigny J, Lin Y et al (1999) Targeted disruption of CD39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5:1010–1017

    Article  CAS  PubMed  Google Scholar 

  33. Inscho EW (2009) ATP, P2 receptors and the renal microcirculation. Pur Sig in press

  34. Flores NA, Stavrou BM, Sheridan DJ (1999) The effects of diadenosine polyphosphates on the cardiovascular system. Cardiovasc Res 42:15–26

    Article  CAS  PubMed  Google Scholar 

  35. Jankowski M, Szczepanska-Konkel M, Kalinowski L, Angielski S (2001) The role of P2Y-receptors in the regulation of glomerular volume. Med Sci Monit 7:635–640

    CAS  PubMed  Google Scholar 

  36. Harada H, Chan CM, Loesch A, Unwin R, Burnstock G (2000) Induction of proliferation and apoptotic cell death via P2Y and P2X receptors, respectively, in rat glomerular mesangial cells. Kidney Int 57:949–958

    Article  CAS  PubMed  Google Scholar 

  37. Bell PD, Komlosi P, Zhang Z-R (2009) ATP as a mediator of macula densa cell signaling. Pur Sig in press

  38. Schnermann J (2003) The juxtaglomerular apparatus: from anatomical peculiarity to physiological relevance. J Am Soc Nephrol 14:1681–1694

    Article  PubMed  Google Scholar 

  39. Nishiyama A, Majid DS, Walker M et al (2001) Renal interstitial ATP responses to changes in arterial pressure during alterations in tubuloglomerular feedback activity. Hypertension 37:753–759

    CAS  PubMed  Google Scholar 

  40. Inscho EW, Cook AK, Imig JD et al (2003) Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest 112:1895–1905

    CAS  PubMed  Google Scholar 

  41. Osswald H, Muhlbauer B, Schenk F (1991) Adenosine mediates tubuloglomerular feedback response: an element of metabolic control of kidney function. Kidney Int Suppl 32:S128–S131

    CAS  PubMed  Google Scholar 

  42. Sun D, Samuelson LC, Yang T et al (2001) Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA 98:9983–9988

    Article  CAS  PubMed  Google Scholar 

  43. Castrop H, Huang Y, Hashimoto S et al (2004) Impairment of tubuloglomerular feedback regulation of GFR in ecto-5′-nucleotide/CD73-deficient mice. J Clin Invest 114:634–642

    CAS  PubMed  Google Scholar 

  44. Huang DY, Vallon V, Zimmermann H et al (2006) Ecto-5′-nucleotidase (cd73)-dependent and –independent generation of adenosine participates in the mediation of tubuloglomerular feedback in vivo. Am J Physiol Renal Physiol 291:F282–F288

    Article  CAS  PubMed  Google Scholar 

  45. Smith JA, Sivaprasadarao A, Munsey TS (2001) Immunolocalisation of adenosine A1 receptors in the rat kidney. Biochem Pharmacol 61:237–244

    Article  CAS  PubMed  Google Scholar 

  46. Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L (1999) Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J Am Soc Nephrol 10:714–720

    CAS  PubMed  Google Scholar 

  47. Mangravite LM, Xiao G, Giacomini KM (2003) Localization of human equilibrative nucleoside transporters, hENT1 and hANT2, in renal epithelial cells. Am J Physiol Renal Physiol 284:F902–F910

    CAS  PubMed  Google Scholar 

  48. Bailey MA, Shirley DG (2009) Effects of extracellular nucleotides on renal tubular solute transport. Pur Sig in press

  49. Kishore BK, Nelson RD, Miller RL et al (2009) P2Y2 receptors and water transport in the kidney. Pur Sig in press

  50. Yagil C, Katni G, Yagil Y (1994) The effects of adenosine on transepithelial resistance and sodium uptake in the inner medullary collecting duct. Pflügers Arch 427:225–232

    Article  CAS  PubMed  Google Scholar 

  51. Jackson EK, Mi Z, Zhu C, Dubey RK (2003) Adenosine biosynthesis in the collecting duct. J Pharmacol Exp Ther 307:888–896

    Article  CAS  PubMed  Google Scholar 

  52. Poelstra K, Heynen ER, Baller JF et al (1992) Modulation of anti-Thy1 nephritis in the rat by adenine nucleotides. Evidence for an anti-inflammatory role for nucleotidases. Lab Invest 66:555–563

    CAS  PubMed  Google Scholar 

  53. Canani LH, Ng DP, Smiles A et al (2002) Polymorphism in ecto-nucleotide pyrophosphatase/phosphodiesterase1 gene (ENPP1/PC-1) and early development of advanced diabetic nephropathy in type 1 diabetes. Diabetes 51:1188–1193

    Article  CAS  PubMed  Google Scholar 

  54. De Cosmo S, Trevisan R, Dalla Vestra M et al (2003) PC-1 amino acid variant Q121 is associated with a lower glomerular filtration rate in type 2 diabetic patients with abnormal albumin excretion rates. Diabetes Care 26:2898–2902

    Article  PubMed  Google Scholar 

  55. Friedman DJ, Rennke HG, Csizmadia E et al (2007) The vascular ectonucleotidase ENTPD1 is a novel renoprotective factor in diabetic nephropathy. Diabetes 56:2371–2379

    Article  CAS  PubMed  Google Scholar 

  56. Imai M, Takigami K, Guckelberger O et al (1999) Modulation of nucleoside triphosphate diphosphohydrolase-1 (NTPDase-1) cd39 in xenograft rejection. Mol Med 5:743–752

    CAS  PubMed  Google Scholar 

  57. Mui KW, van Son WJ, Tiebosch TMG et al (2003) Clinical relevance of immunohistochemical staining for ecto-AMPase and ecto-ATPase in chronic allograft nephropathy (CAN). Nephrol Dial Transplant 18:153–163

    Article  Google Scholar 

  58. Smit-van Oosten A, Bakker WW, van Goor H (2002) De-novo expression of vascular ecto-5′-nucleotidase and down-regulation of glomerular ecto-ATPase in experimental chronic renal transplant failure. Transpl Int 15:602–609

    CAS  PubMed  Google Scholar 

  59. Candinas D, Koyamada N, Miyatake T et al (1996) Loss of rat glomerular ATP diphosphohydrolase activity during reperfusion injury is associated with oxidative stress reactions. Thromb Haemost 76:807–812

    CAS  PubMed  Google Scholar 

  60. Grenz A, Zhang H, Hermes M et al (2007) Contribution of E-NTPDase1 (CD39) to renal protection from ischemia-reperfusion injury. FASEB J 21:2863–2873

    Article  CAS  PubMed  Google Scholar 

  61. Bakker WW, Mui KW, van Son WJ (2000) Detection of glomerular ischemia in chronic graft failure by the quantification of glomerular ecto 5′nucleotidase and ecto-ATPase. In: Vanduffel, Lemmens (ed) Ecto-ATPase and related ectonucleotidases. Shaker Publishers, Maastricht, pp 192–201

    Google Scholar 

  62. Kaissling B, Speiss S, Rinne B, Le Hir M (1993) Effects of anemia on morphology of rat renal cortex. Am J Physiol 264:F608–F617

    CAS  PubMed  Google Scholar 

  63. Grenz A, Zhang H, Eckle T et al (2007) Protective role of ecto-5′-nucleotidase (CD73) in renal ischemia. J Am Soc Nephrol 18:833–845

    Article  CAS  PubMed  Google Scholar 

  64. Okusa MD (2002) A2A adenosine receptor: a novel therapeutic target in renal disease. Am J Physiol Renal Physiol 282:F10–F18

    CAS  PubMed  Google Scholar 

  65. Zhao Z, Kapoian T, Shepard M, Lianos EA (2002) Adenosine-induced apoptosis in glomerular mesangial cells. Kidney Int 61:1276–1285

    Article  CAS  PubMed  Google Scholar 

  66. Munkonda MN, Kauffenstein G, Kukulski F et al (2007) Inhibition of human and mouse plasma membrane bound NTPDases by P2 receptor antagonists. Biochem Pharmacol 74:1524–1534

    Article  CAS  PubMed  Google Scholar 

  67. Grobben B, Claes P, Roymans D et al (2000) Ecto-nucleotide pyrophosphatase modulates the purinoceptor-mediated signal transduction and is inhibited by purinoceptor antagonists. Br J Pharmacol 130:139–145

    Article  CAS  PubMed  Google Scholar 

  68. Iqbal J, Vollmayer P, Braun N et al (2005) A capillary electrophoresis method for the characterization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and the analysis of inhibitors by in-capillary enzymatic microreaction. Pur Sig 1:349–358

    Article  CAS  Google Scholar 

  69. Gendron FP, Halbfinger E, Fischer B et al (2000) Novel inhibitors of nucleoside triphosphate diphosphohydrolases: chemical synthesis and biochemical and pharmacological characterizations. J Med Chem 43:2239–2247

    Article  CAS  PubMed  Google Scholar 

  70. Gendron FP, Benrezzak O, Krugh BW et al (2002) Purine signaling and potential new therapeutic approach: possible outcomes of NTPDase inhibition. Curr Drug Targets 3:229–245

    Article  CAS  PubMed  Google Scholar 

  71. Müller CE, Iqbal J, Bagi Y et al (2006) Polyoxometalates—a new class of potent ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors. Bioorg Med Chem Lett 16:5943–5947

    Article  PubMed  Google Scholar 

  72. Brunschweiger A, Iqbal J, Umbach F et al (2008) Selective nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) inhibitors: nucleoside mimetics derived from uridine-5′-carboxamide. J Med Chem 51:4518–4528

    Article  CAS  PubMed  Google Scholar 

  73. Munkonda MN, Pelletier J, Ivanenkov VV et al (2009) Characterization of a monoclonal antibody as the first specific inhibitor of human nucleoside triphosphate diphosphohydrolase-3 (NTPDase3): partial characterization of the inhibitory epitope and potential applications. FEBS J 276:479–96

    Article  CAS  PubMed  Google Scholar 

  74. Knowles AE, Nagy AK (1999) Inhibition of an ecto-ATP-diphosphohydrolase by azide. Eur J Biochem 262:349–357

    Article  CAS  PubMed  Google Scholar 

  75. Plesner L (1995) Ecto-ATPases: identities and functions. Int Rev Cytol 158:141–214

    Article  CAS  PubMed  Google Scholar 

  76. Enjyoji K, Sévigny J, Lin Y et al (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5:1010–1017

    Article  CAS  PubMed  Google Scholar 

  77. Cauwenberghs S, Feijge MA, Hageman G et al (2006) Plasma ectonucleotidases prevent desensitization of purinergic receptors in stored platelets: importance for platelet activity during thrombus formation. Transfusion 46:1018–1028

    Article  CAS  PubMed  Google Scholar 

  78. Schaefer U, Machida T, Broekman MJ et al (2007) Targeted deletion of ectonucleoside triphosphate diphosphohydrolase 1/CD39 leads to desensitization of pre- and postsynaptic purinergic P2 receptors. J Pharmacol Exp Ther 322:1269–1277

    Article  CAS  PubMed  Google Scholar 

  79. Leipziger J (2003) Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol 284:F419–F432

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories was supported by Kidney Research UK, St Peter’s Trust for Kidney, Bladder and Prostate Research and the Canadian Institutes of Health Research (CIHR). J.S. was also the recipient of a New Investigator award from the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Shirley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirley, D.G., Vekaria, R.M. & Sévigny, J. Ectonucleotidases in the kidney. Purinergic Signalling 5, 501–511 (2009). https://doi.org/10.1007/s11302-009-9152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-009-9152-4

Keywords

Navigation