Skip to main content

Advertisement

Log in

Antiproliferative effects of selective adenosine receptor agonists and antagonists on human lymphocytes: evidence for receptor-independent mechanisms

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The effects of standard adenosine receptor (AR) agonists and antagonists on the proliferation of human T lymphocytes, unstimulated and phytohemagglutinin-stimulated human peripheral blood lymphocytes (PBL), and Jurkat T cells were investigated. Real-time PCR measurements confirmed the presence of all four AR subtypes on the investigated cells, although at different expression levels. A2A ARs were predominantly expressed in PBL and further upregulated upon stimulation, while malignant Jurkat T cells showed high expression levels of A1, A2A, and A2B ARs. Cell proliferation was measured by [3H]-thymidine incorporation assays. Several ligands, including the subtype-selective agonists CPA (A1), BAY60-6583 (A2B), and IB-MECA (A3), and the antagonists PSB-36 (A1), MSX-2 (A2A), and PSB-10 (A3) significantly inhibited cell proliferation at micromolar concentrations, which were about three orders of magnitude higher than their AR affinities. In contrast, further investigated AR ligands, including the agonists NECA (nonselective) and CGS21680 (A2A), and the antagonists preladenant (SCH-420814, A2A), PSB-1115 (A2B), and PSB-603 (A2B) showed no or only minor effects on lymphocyte proliferation. The anti-proliferative effects of the AR agonists could not be blocked by the corresponding antagonists. The non-selective AR antagonist caffeine stimulated phytohemagglutinin-activated PBL with an EC50 value of 104 μM. This is the first study to compare a complete set of commonly used AR ligands for all subtypes on lymphocyte proliferation. Our results strongly suggest that these compounds induce an inhibition of lymphocyte proliferation and cell death through AR-independent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ADA:

Adenosine deaminase

AR:

Adenosine receptor

BAY60-6583:

2-[6-Amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide

cAMP:

Cyclic AMP

CGS-21680:

(2-p-[2-Carboxyethyl]phenethylamino)-5′-N-ethylcarboxamido-adenosine

CI-IB-MECA:

2-Chloro-N 6-(3-iodobenzyl)-9-[5-(methyl-carbamoyl)-β-d-ribofuranosyl]adenine

CPA:

N 6-Cyclopentyladenosine

DMSO:

Dimethyl sulfoxide

EDTA:

Ethylenediaminetetraacetic acid

FCS:

Fetal calf serum

GPCR(s):

G protein-coupled receptor(s)

IB-MECA:

N 6-(3-Iodobenzyl)-5′-N-methylcarboxamidoadenosine

MSX-2:

3-(3-Hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine

NECA:

5′-N-Ethylcarboxamidoadenosine

PBL:

Peripheral blood lymphocytes

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PHA:

Phytohemagglutinin

PSB-10:

(R)-8-Ethyl-4-methyl-2-(2,3,5-trichlorophenyl)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one

PSB-36:

1-Butyl-8-(3-noradamantanyl)-3-(3-hydroxypropyl)xanthine

PSB-603:

8-[4-[4-(4-Chlorophenyl)piperazine-1-sulfonyl)phenyl]]-1-propylxanthine

PSB-1115:

1-Propyl-8-p-sulfophenylxanthine

SCID:

Severe combined immunodeficiency

SCH420814:

Preladenant

TNF:

Tumor necrosis factor

References

  1. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63(1):1–34

    Article  PubMed  CAS  Google Scholar 

  2. Mirabet M, Mallol J, Lluis C, Franco R (1997) Calcium mobilization in Jurkat cells via A2b adenosine receptors. Br J Pharmacol 122:1075–1082

    Article  PubMed  CAS  Google Scholar 

  3. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  4. Ernst PB, Garrison JC, Thompson LF (2010) Much ado about adenosine: adenosine synthesis and function in regulatory T cell biology. J Immunol 185(4):1993–1998

    Article  PubMed  CAS  Google Scholar 

  5. Linden J, Cekic C (2012) Regulation of lymphocyte function by adenosine. Arterioscler Thromb Vasc Biol 32(9):2097–2103

    Article  PubMed  CAS  Google Scholar 

  6. Ferrero ME (2011) Purinoceptors in inflammation: potential as anti-inflammatory therapeutic targets. Front Biosci 16:2172–2186

    Article  CAS  Google Scholar 

  7. Burnstock G, Brouns I, Adriaensen D, Timmermans JP (2012) Purinergic signaling in the airways. Pharmacol Rev 64(4):834–868

    Article  PubMed  CAS  Google Scholar 

  8. Erdmann AA, Gao ZG, Jung U, Foley J, Borenstein T, Jacobson KA, Fowler DH (2005) Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo. Blood 105:4707–4714

    Article  PubMed  CAS  Google Scholar 

  9. Ohta A, Kjaergaard J, Sharma S, Mohsin M, Goel N, Madasu M, Fradkov E, Sitkovsky M (2009) In vitro induction of T cells that are resistant to A2 adenosine receptor-mediated immunosuppression. Br J Pharmacol 156:297–306

    Article  PubMed  CAS  Google Scholar 

  10. Barbieri D, Abbracchio MP, Salvioli S, Monti D, Cossarizza A, Ceruti S, Brambilla R, Cattabeni F, Jacobson KA, Franceschi C (1998) Apoptosis by 2-chloro-2′-deoxy-adenosine and 2-chloro-adenosine in human peripheral blood mononuclear cells. Neurochem Int 32:493–504

    Article  PubMed  CAS  Google Scholar 

  11. Szondy Z (1994) Adenosine stimulates DNA fragmentation in human thymocytes by Ca2+-mediated mechanisms. Biochem J 304:877–885

    PubMed  CAS  Google Scholar 

  12. Apasov SG, Sitkovsky MV (1999) The extracellular versus intracellular mechanisms of inhibition of TCR-triggered activation in thymocytes by adenosine under conditions of inhibited adenosine deaminase. Int Immunol 11:179–189

    Article  PubMed  CAS  Google Scholar 

  13. Desrosiers MD, Cembrola KM, Fakir MJ, Stephens LA, Jama FM, Shameli A, Mehal WZ, Santamaria P, Shi Y (2007) Adenosine deamination sustains dendritic cell activation in inflammation. J Immunol 179(3):1884–1892

    PubMed  CAS  Google Scholar 

  14. Gelfand EW, Lee JJ, Dosch HM (1979) Selective toxicity of purine deoxynucleosides for human lymphocyte growth and function. Proc Natl Acad Sci U S A 76:1998–2002

    Article  PubMed  CAS  Google Scholar 

  15. Kizaki H, Suzuki K, Tadakuma T, Ishimura Y (1990) Adenosine receptor-mediated accumulation of cyclic AMP-induced T-lymphocyte death through internucleosomal DNA cleavage. J Biol Chem 265:5280–5284

    PubMed  CAS  Google Scholar 

  16. Jackson EK, Gillespie DG, Dubey RK (2011) 2′-AMP and 3′-AMP inhibit proliferation of preglomerular vascular smooth muscle cells and glomerular mesangial cells via A2B receptors. J Pharmacol Exp Ther 337(2):444–450

    Article  PubMed  CAS  Google Scholar 

  17. Taliani S, La Motta C, Mugnaini L, Simorini F, Salerno S, Marini AM, Da Settimo F, Cosconati S, Cosimelli B, Greco G, Limongelli V, Marinelli L, Novellino E, Ciampi O, Daniele S, Trincavelli ML, Martini C (2010) Novel N2-substituted pyrazolo[3,4-d]pyrimidine adenosine A3 receptor antagonists: inhibition of A3-mediated human glioblastoma cell proliferation. J Med Chem 53:3954–3963

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka Y, Yoshihara K, Tsuyuki M, Kamiya T (1994) Apoptosis induced by adenosine in human leukemia HL-60 cells. Exp Cell Res 213:242–252

    Article  PubMed  CAS  Google Scholar 

  19. Abbracchio MP (1996) P1 and P2 receptors in cell growth and differentiation. Drug Dev Res 39:393–406

    Article  CAS  Google Scholar 

  20. Jacobson KA, Hoffmann C, Cattabeni F, Abbracchio MP (1999) Adenosine-induced cell death: evidence for receptor-mediated signalling. Apoptosis 4:197–211

    Article  PubMed  CAS  Google Scholar 

  21. Mlejnek P, Dolezel P, Kosztyu P (2012) P-glycoprotein mediates resistance to A3 adenosine receptor agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5′-n-methyluronamide in human leukemia cells. J Cell Physiol 227:676–685

    Article  PubMed  CAS  Google Scholar 

  22. Brambilla R, Cattabeni F, Ceruti S, Barbieri D, Franceschi C, Kim YC, Jacobson KA, Klotz KN, Lohse MJ, Abbracchio MP (2000) Activation of the A3 adenosine receptor affects cell cycle progression and cell growth. Naunyn Schmiedebergs Arch Pharmacol 361:225–234

    Article  PubMed  CAS  Google Scholar 

  23. Merighi S, Mirandola P, Milani D, Varani K, Gessi S, Klotz KN, Leung E, Baraldi PG, Borea PA (2002) Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J Invest Dermatol 119:923–933

    Article  PubMed  CAS  Google Scholar 

  24. Panjehpour M, Karami-Tehrani F (2007) Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors. Oncol Res 16:575–585

    Article  PubMed  CAS  Google Scholar 

  25. Schneider C, Wiendl H, Ogilvie A (2001) Biphasic cytotoxic mechanism of extracellular ATP on U-937 human histiocytic leukemia cells: involvement of adenosine generation. Biochim Biophys Acta 1538:190–205

    Article  PubMed  CAS  Google Scholar 

  26. Fishman P, Bar-Yehuda S, Barer F, Madi L, Multani AS, Pathak S (2001) The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp Cell Res 269:230–236

    Article  PubMed  CAS  Google Scholar 

  27. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Borea PA (2005) A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J Biol Chem 280:19516–19526

    Article  PubMed  CAS  Google Scholar 

  28. Blad CC, von Frijtag Drabbe Kunzel JK, de Vries H, Mulder-Krieger T, Bar-Yehuda S, Fishman P, IJzerman AP (2011) Putative role of the adenosine A3 receptor in the antiproliferative action of N 6-(2-isopentenyl)adenosine. Purinergic Signal 7:453–462

    Article  PubMed  CAS  Google Scholar 

  29. Panjehpour M, Castro M, Klotz KN (2005) Human breast cancer cell line MDA-MB-231 expresses endogenous A2B adenosine receptors mediating a Ca2+ signal. Br J Pharmacol 145:211–218

    Article  PubMed  CAS  Google Scholar 

  30. Jackson EK, Ren J, Gillespie DG (2011) 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors. Am J Physiol Heart Circ Physiol 301(2):H391–401

    Article  PubMed  CAS  Google Scholar 

  31. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Simioni C, Leung E, Maclennan S, Baraldi PG, Borea PA (2007) Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1a, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol 72(2):395–406

    Article  PubMed  CAS  Google Scholar 

  32. Ma DF, Kondo T, Nakazawa T, Niu DF, Mochizuki K, Kawasaki T, Yamane T, Katoh R (2010) Hypoxia-inducible adenosine A2B receptor modulates proliferation of colon carcinoma cells. Hum Pathol 41(11):1550–1557

    Article  PubMed  CAS  Google Scholar 

  33. Ceruti S, Franceschi C, Barbieri D, Malorni W, Camurri A, Giammarioli AM, Ambrosini A, Racagni G, Cattabeni F, Abbracchio MP (2000) Apoptosis induced by 2-chloro-adenosine and 2-chloro-2′-deoxy-adenosine in a human astrocytoma cell line: differential mechanisms and possible clinical relevance. J Neurosci Res 60:388–400

    Article  PubMed  CAS  Google Scholar 

  34. Minelli A, Bellezza I, Tucci A, Rambotti MG, Conte C, Culig Z (2009) Differential involvement of reactive oxygen species and nucleoside transporters in cytotoxicity induced by two adenosine analogues in human prostate cancer cells. Prostate 69:538–547

    Article  PubMed  CAS  Google Scholar 

  35. Mirabet M, Mallol J, Lluis C, Franco R (1997) Dipropylcyclopentylxanthine triggers apoptosis in Jurkat T cells by a receptor-independent mechanism. Cell Death Differ 4:639–646

    Article  PubMed  CAS  Google Scholar 

  36. Morello S, Petrella A, Festa M, Popolo A, Monaco M, Vuttariello E, Chiappetta G, Parente L, Pinto A (2008) Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biol Ther 7:278–284

    Article  PubMed  CAS  Google Scholar 

  37. Boyum A (1968) Separation of leukocytes from blood and bone marrow. Introduction. Scand J Clin Lab Invest Suppl 97:7

    PubMed  CAS  Google Scholar 

  38. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  39. Ohta A, Sitkovsky M (2011) Methylxanthines, inflammation, and cancer: fundamental mechanisms. Handb Exp Pharmacol 200:469–481

    Article  PubMed  CAS  Google Scholar 

  40. Himer L, Csoka B, Selmeczy Z, Koscso B, Pocza T, Pacher P, Nemeth ZH, Deitch EA, Vizi ES, Cronstein BN, Hasko G (2010) Adenosine A2A receptor activation protects CD4+ T lymphocytes against activation-induced cell death. FASEB J 24(8):2631–2640

    Article  PubMed  CAS  Google Scholar 

  41. Mills JH, Kim DG, Krenz A, Chen JF, Bynoe MS (2012) A2A adenosine receptor signaling in lymphocytes and the central nervous system regulates inflammation during experimental autoimmune encephalomyelitis. J Immunol 188(11):5713–5722

    Article  PubMed  CAS  Google Scholar 

  42. Gessi S, Varani K, Merighi S, Cattabriga E, Avitabile A, Gavioli R, Fortini C, Leung E, Mac Lennan S, Borea PA (2004) Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65(3):711–719

    Article  PubMed  CAS  Google Scholar 

  43. Sitkovsky MV, Ohta A (2005) The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol 26:299–304

    Article  PubMed  CAS  Google Scholar 

  44. Panjehpour M, Karami-Tehrani F (2004) An adenosine analog (IB-MECA) inhibits anchorage-dependent cell growth of various human breast cancer cell lines. Int J Biochem Cell Biol 36:1502–1509

    Article  PubMed  CAS  Google Scholar 

  45. Feng Y, Wu J, Feng X, Tao D, Hu J, Qin J, Li X, Xiao W, Gardner K, Judge SI, Li QQ, Gong J (2007) Timing of apoptosis onset depends on cell cycle progression in peripheral blood lymphocytes and lymphocytic leukemia cells. Oncol Rep 17:1437–1444

    PubMed  Google Scholar 

  46. Müller CE, Ferre S (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Recent Pat CNS Drug Discov 2(1):1–21

    Article  PubMed  Google Scholar 

  47. Müller CE, Jacobson KA (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 1808(5):1290–1308

    Article  PubMed  Google Scholar 

  48. Shelton JR, Cutler CE, Oliveira M, Balzarini J, Peterson MA (2012) Synthesis, SAR, and preliminary mechanistic evaluation of novel antiproliferative N 6,5′-bis-ureido- and 5′-carbamoyl-N 6-ureidoadenosine derivatives. Bioorg Med Chem 20(2):1008–1019

    Article  PubMed  CAS  Google Scholar 

  49. Böhm L, Roos WP, Serafin AM (2003) Inhibition of DNA repair by Pentoxifylline and related methylxanthine derivatives. Toxicology 193(1–2):153–160

    Article  PubMed  Google Scholar 

  50. Garuti L, Roberti M, Bottegoni G (2009) Small molecule aurora kinases inhibitors. Curr Med Chem 16(16):1949–1963

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (DFG) within the Graduiertenkolleg GRK 677 (S.K.L, C.E.M.) and the NRW-Forschungsschule Biotech Pharma (A.C.S., C.E.M.). We thank H. Eltzschig and S. Zug (University of Tübingen, Germany) and A. Bill (University of Bonn, Germany) for their support in real-time PCR experiments. The technical assistance of N. Florin is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa E. Müller.

Additional information

Anke C. Schiedel and Svenja K. Lacher contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiedel, A.C., Lacher, S.K., Linnemann, C. et al. Antiproliferative effects of selective adenosine receptor agonists and antagonists on human lymphocytes: evidence for receptor-independent mechanisms. Purinergic Signalling 9, 351–365 (2013). https://doi.org/10.1007/s11302-013-9354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-013-9354-7

Keywords

Navigation