Skip to main content

Advertisement

Log in

Metabolomics of urinary organic acids in respiratory chain deficiencies in children

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Metabolomic analysis of the urinary organic acids from 39 selected children with defined respiratory chain deficiencies (RCDs) was performed using untargeted gas chromatography–mass spectrometry, revealing the presence of 255 endogenous and 46 exogenous substances. Variable reduction identified 92 variables from the endogenous substances, which could be analysed by univariate and multivariate statistical methods. Using these methods, no characteristic organic acid biomarker profile could be defined of practical value for diagnostic purposes for complex I (CI), complex III (CIII) and multiple complex (CM) deficiencies. The statistical procedures used did, however, disclose 24 metabolites that were practical highly (d > 0.75) and statistically (P < 0.05) significant for the combined and clinically closely related group of RCDs. Several of these metabolites occur in single enzyme inherited metabolic diseases, but most were not previously reported to be linked to the metabolic perturbations that are due to RCDs. Ultimately, we constructed a global metabolic profile of carbohydrate, amino acid and fatty acid catabolism, illuminating the diverse and complex biochemical consequences of these disorders. This metabolomics investigation disclosed a metabolite profile that has the potential to define an extended and characteristic biosignature for RCDs and the development of a non-invasive screening procedure for these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, S., Bankier, A. T., & Barrell, B. G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290, 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.

    Article  Google Scholar 

  • Banaszak, L. J., & Bradshaw, R. A. (1975). Malate dehydrogenases. In P. D. Boyer (Ed.), The enzymes, 11 oxidation-reduction part A (pp. 369–396). New York, San Francisco, London: Academic Press.

    Google Scholar 

  • Barshop, B. A. (2004). Metabolomic approaches to mitochondrial disease: Correlation of urine organic acids. Mitochondrion, 4, 521–527.

    Article  PubMed  CAS  Google Scholar 

  • Barshop, B. A., Nyhan, W. L., Naviaux, R. K., et al. (2000). Kearns-Sayre syndrome presenting as 2-oxoadipic aciduria. Molecular Genetics and Metabolism, 69, 64–68.

    Article  PubMed  CAS  Google Scholar 

  • Beeckman, S., & Kanarek, L. (1981). Demonstration of physical interactions between consecutive enzymes of the citric acid cycle and of the aspartate-malate shuttle. European Journal of Biochemistry, 117, 527–535.

    Article  Google Scholar 

  • Bennett, M. J., Sherwood, W. G., Gibson, K. M., & Burlina, A. B. (1993). Secondary inhibition of multiple NAD-requiring dehydrogenases in respiratory chain complex I deficiency: Possible metabolic markers for the primary defect. Journal of Inherited Metabolic Disease, 16, 560–562.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. J., Weinberger, M. J., Sherwood, W. G., & Burlina, A. B. (1994). Secondary 3-hydroxydicarboxylic aciduria mimicking long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Journal of Inherited Metabolic Disease, 17, 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Bernier, F. P., Boneh, A., Dennett, X., et al. (2002). Diagnostic criteria for respiratory chain disorders in adults and children. Neurology, 59, 1406–1411.

    PubMed  CAS  Google Scholar 

  • Bijlsma, S., Bobeldijk, I., Verheij, E. R., et al. (2006). Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Analytical Chemistry, 78, 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Boekema, E. J., & Braun, H.-P. (2007). Supramolecular structure of the mitochondrial oxidative phosphorylated system. Journal of Biological Chemistry, 282, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Buckel, W., & Miller, S. L. (1987). Equilibrium constants of several reactions involved in the fermentation of glutamate. European Journal of Biochemistry, 164, 565–569.

    Article  PubMed  CAS  Google Scholar 

  • Carraro, S., Giordano, G., Reniero, F., Perilongo, G., & Baraldi, E. (2009). Metabolomics: A new frontier for research in pediatrics. Journal of Pediatrics, 154, 638–644.

    Article  PubMed  Google Scholar 

  • Chen, J., Meng, C.-K., Narayan, S. B., Luan, W., & Bennett, M. J. (2009). The use of deconvolution reporting software© and backflush improves the speed and accuracy of data processing for urinary organic acid analysis. Clinica Chimica Acta, 405, 53–59.

    Article  CAS  Google Scholar 

  • Christensen, E., Brandt, N. J., Schmalbruch, H., et al. (1993). Muscle cytochrome c oxidase deficiency accompanied by a urinary organic acid pattern mimicking multiple acyl-CoA dehydrogenase deficiency. Journal of Inherited Metabolic Disease, 16, 553–556.

    Article  PubMed  CAS  Google Scholar 

  • DiMauro, S., & Andreu, A. L. (2000). Mutations in mtDNA: Are we scraping the bottom of the barrel? Brain Pathology, 10, 431–441.

    Article  PubMed  CAS  Google Scholar 

  • Dudkina, N. V., Sunderhaus, S., Boekema, E. J., & Braun, H.-P. (2008). The higher level of organization of the oxidative phosphorylation system: Mitochondrial supercomplexes. Journal of Bioenergetics and Biomembranes, 40, 419–424.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trends in Analytical Chemistry, 24, 285–294.

    Article  CAS  Google Scholar 

  • Duran, M. (2005). Disorders of mitochondrial fatty acid oxidation. In N. Blau, M. Duran, & M. E. Blaskovics (Eds.), Physician’s guide to the laboratory diagnosis of metabolic diseases (Revised 2nd ed., pp. 309–334). Heidelberg: Springer.

  • Duran, M., Beemer, F. A., Tibosch, A. S., et al. (1982). Inherited 3-methylglutaconic aciduria in two brothers—another defect of leucine metabolism. Journal of Pediatrics, 101, 551–554.

    Article  PubMed  CAS  Google Scholar 

  • Duran, M., Kamerling, J. P., Bakker, H. D., Van Gennip, A. H., & Wadman, S. K. (1980). l-2-hydroxyglutaric aciduria: An inborn error of metabolism? Journal of Inherited Disease, 3, 109–112.

    Article  CAS  Google Scholar 

  • Ellis, S. M., & Steyn, H. S. (2003). Practical significance (effect sizes) versus or in combination with statistical significance (p-values). Management Dynamics, 12, 51–53.

    Google Scholar 

  • Enns, G. M., Bennett, M. J., Hoppel, C. L., et al. (2000). Mitochondrial respiratory chain complex I deficiency with clinical and biochemical features of long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. Journal of Pediatrics, 136, 251–254.

    Article  PubMed  CAS  Google Scholar 

  • Erasmus, C., Mienie, L. J., Reinecke, C. J., & Wadman, S. K. (1985). Organic aciduria in late-onset biotin-responsive multiple carboxylase deficiency. Journal of Inherited Metabolic Disease, 8, 105–106.

    Article  PubMed  Google Scholar 

  • Esteitie, N., Hinttala, R., Wibom, R., et al. (2005). Secondary metabolic effects in complex I deficiency. Annals of Neurology, 58, 544–552.

    Article  PubMed  CAS  Google Scholar 

  • Foulon, V., Sniekers, M., Huysmans, E., et al. (2005). Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanol-CoA lyase. Journal of Biological Chemistry, 280, 9802–9812.

    Article  PubMed  CAS  Google Scholar 

  • Frankenhaeuser, M., Lundberg, U., Rauste von Wright, M., von Wright, J., & Sedvall, G. (1985). Urinary monoamine metabolites as indices of mental stress in healthy male and females. Pharmacology, Biochemistry and Behaviour, 24, 1521–1525.

    Article  Google Scholar 

  • Goodacre, R., Broadhurst, D., Smilde, A. K., et al. (2007). Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics, 3, 231–241.

    Article  CAS  Google Scholar 

  • Gordon, N. (2006). Glutaric aciduria types I and II. Brain and Development, 28, 136–140.

    Article  PubMed  Google Scholar 

  • Haas, R. H., Parikh, S., Falk, M. J., et al. (2008). The in-depth evaluation of suspected mitochondrial disease. Molecular Genetics and Metabolism, 94, 16–37.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich, R., & Rapoport, T. A. (1974). A linear steady-state treatment of enzymatic chains. European Journal of Biochemistry, 42, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • HMDB. (2010). Human metabolome database, Version 2.5. Retrieved Oct 23, 2010 from http://www.hmdb.ca.

  • Hoffman, G. F., & Feyh, P. (2005). Organic acid analysis. In N. Blau, M. Duran, & M. E. Blaskovics (Eds.), Physician’s guide to the laboratory diagnosis of metabolic diseases (Revised 2 ed., pp. 27–44). Heidelberg: Springer.

    Google Scholar 

  • Hofhaus, G., Johns, D. R., Hurko, O., Attardi, G., & Chomyn, A. (1996). Respiration and growth defects in transmitochondrial cell lines carrying the 11778 mutation associated with Leber’s hereditary optic neuropathy. Journal of Biological chemistry, 271, 13155–13161.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, A. J. M., Trijbels, F. J. M., Sengers, R. C. A., et al. (2007). Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clinical Chemistry, 53, 729–734.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (1998). Applied multivariate statistical analysis (4th ed.). Englewood Cliffs: Prentice-Hall, Inc.

    Google Scholar 

  • Kelley, R. I., & Kratz, L. (1995). 3-methylglutaconic acidaemia in Smith-Lemli-Opitz syndrome. Pediatric Research, 37, 671–674.

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewski, B. (2001). Theoretical studies on the regulation of oxidative phosphorylation in intact tissues. Biochimica et Biophysica Acta, 1504, 31–45.

    Article  PubMed  CAS  Google Scholar 

  • Kumps, A., Duez, P., & Mardens, Y. (2002). Metabolic, nutritional, latrogenic, and artifactual sources of urinary organic acids: A comprehensive table. Clinical Chemistry, 48, 708–717.

    PubMed  CAS  Google Scholar 

  • Kurlemann, G., Paetzke, I., Möller, H., et al. (1995). Therapy of complex I deficiency: Peripheral neuropathy during dichloroacetate theraby. European Journal of Pediatrics, 154, 928–932.

    Article  PubMed  CAS  Google Scholar 

  • Kuwertz-Bröking, E., Koch, H. G., Marquardt, T., et al. (2000). Renal Fanconi syndrome: First sign of partial respiratory chain complex IV deficiency. Pediatric Nephrology, 14, 495–498.

    Article  PubMed  Google Scholar 

  • Lalani, S. R., Vladutiu, G. D., Plunkett, K., et al. (2005). Isolated mitochondrial myopathy associated with muscle coenzyme Q10 deficiency. Archives of Neurology, 62, 317–320.

    Article  PubMed  Google Scholar 

  • Mamas, M., Dunn, W. B., Neyses, L., & Goodacre, R. (2011). The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Archives of Toxicology, 85, 5–17.

    Article  PubMed  CAS  Google Scholar 

  • Mancuso, M., Orsucci, D., Coppedè, F., et al. (2009). Diagnostic approach to mitochondrial disorders: The need for a reliable biomarker. Current Molecular Medicine, 9, 1095–1107.

    Article  PubMed  CAS  Google Scholar 

  • Mazat, J.-P., Rossignol, R., Malgat, M., et al. (2001). What do mitochondrial diseases teach us about normal mitochondrial functions… that we already knew: Threshold expression of mitochondrial defects. Biochimica et Biophysica Acta, 1504, 20–30.

    Article  PubMed  CAS  Google Scholar 

  • Mochel, F., Slama, A., Touati, G., et al. (2005). Respiratory chain defects may present only with hypoglycemia. Journal of Clinical Endocrinology and Metabolism, 90, 3780–3785.

    Article  PubMed  CAS  Google Scholar 

  • Morava, E., van den Heuvel, L., Hol, F., et al. (2006). Mitochondrial disease criteria: Diagnostic application in children. Neurology, 26, 1823–1826.

    Article  Google Scholar 

  • Morrow, D. A., & de Lemos, J. A. (2007). Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation, 115, 949–952.

    Article  PubMed  Google Scholar 

  • Munnich, A., Rustin, P., Rötig, A., et al. (1992). Clinical aspects of mitochondrial disorders. Journal of Inherited Metabolic Disorders, 15, 448–455.

    Article  CAS  Google Scholar 

  • Pfeiffer, T., Schuster, S., & Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science, 292, 504–507.

    Article  PubMed  CAS  Google Scholar 

  • Rabier, D., Diry, C., Rotig, A., et al. (1998). Persistent hypocitrullinaemia as a marker for mtDNA NARP T 8993 G mutation? Journal of Inherited Metabolic Disorder, 21, 216–219.

    Article  CAS  Google Scholar 

  • Rahman, S., Blok, R. B., Dahl, H. H., et al. (1996). Leigh syndrome: Clinical features and biochemical and DNA abnormalities. Annals of Neurology, 39, 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Rauste-von Wright, M., & Frankenhaeuser, M. (1989). Females’ emotionality as reflected in the excretion of the dopamine metabolite HVA during mental stress. Psychological Reports, 64, 856–858.

    Article  PubMed  CAS  Google Scholar 

  • Reder, C. (1988). Metabolic control: A structural approach. Journal of Theoretical Biology, 135, 175–201.

    Article  PubMed  CAS  Google Scholar 

  • Reinecke, F., Smeitink, J. A. M., & van der Westhuizen, F. H. (2009). OXPHOS gene expression and control in mitochondrial disorders. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1792, 1113–1121.

    Article  CAS  Google Scholar 

  • Rossignol, R., Faustin, B., Rocher, C., et al. (2003). Mitochondrial threshold effects. Biochemical Journal, 370, 751–762.

    Article  PubMed  CAS  Google Scholar 

  • Rzem, R., Veiga-da-Cunha, M., Noël, G., et al. (2004). A gene encoding a putative FAD-dependent l-2-hydroxygluterate dehydrogenase is mutated in l-2-hydroxyglutaric aciduria. Proceedings of the National Academy of Sciences USA, 101, 16849–16854.

    Article  CAS  Google Scholar 

  • Shah, N. S., Mitchell, W. G., & Boles, R. G. (2002). Mitochondrial disorders: A potentially under-recognized etiology of infantile spasms. Journal of Child Neurology, 17, 369–372.

    Article  PubMed  Google Scholar 

  • Shepherd, D., & Garland, P. B. (1969). The kinetic properties of citrate synthase from rat liver mitochondria. Biochemistry Journal, 114, 597–610.

    CAS  Google Scholar 

  • Smeitink, J. (2003). Mitochondrial disorders: Clinical presentation and diagnostic dilemmas. Journal of Inherited Metabolic Disease, 26, 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Smeitink, J., Zeviani, M., Turnbull, D. M., & Jacobs, H. (2006). Mitochondrial medicine: A metabolic perspective on the pathology of oxidative phosphoryation disorders. Cellular Metabolism, 3, 9–13.

    Article  CAS  Google Scholar 

  • Smuts, I., Louw, R., du Toit, H., Klopper, B., Mienie, L. J., & van der Westhuizen, F. H. (2010). An overview of a cohort of South African patients with mitochondrial disorders. Journal of Inherited Metabolic Disease. doi:10.1007/s10545-009-9032-8.

  • Sperl, W., Jesina, P., Zeman, J., et al. (2006). Deficiency of mitochondrial ATP synthase of nuclear genetic origin. Neuromuscular Disorders, 16, 821–829.

    Article  PubMed  CAS  Google Scholar 

  • Suomalainen, A. (2010). Biomarkers for mitochondrial respiratory chain disorders. Journal of Inherited Metabolic Disease. doi:10.1007/s10545-010-9222-3.

  • Sweetman, L., & Williams, J. C. (2001). Branched chain organic acidurias. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic and molecular bases of inherited disease (2nd ed., Vol. 8, pp. 2125–2163). New York: The McGraw-Hill Companies.

    Google Scholar 

  • Topaloğlu, R., Lebre, A. S., Demirkaya, E., et al. (2008). Two new cases with Pearson syndrome and review of Hacettepe experience. Turkish Journal of Pediatrics, 50, 572–576.

    PubMed  Google Scholar 

  • Topçu, M., Jobard, F., Halliez, S., et al. (2004). l-2-Hydroxyglutaric aciduria: Identification of a mutant gene Ci4orf160, localized on chromosome 14q22.1. Human Molecular Genetics, 13, 2803–2811.

    Article  PubMed  Google Scholar 

  • Van Beelen, P., Labro, J. F., Keltjens, J. T., et al. (1984). Derivatives of methanopterin, a coenzyme involved in methanogenesis. European Journal of Biochemistry, 139, 359–365.

    Article  PubMed  Google Scholar 

  • Van Schaftingen, E., Rzem, R., & Veiga-da-Cunha, M. (2009). l-2-hydroxyglutaric aciduria, a disorder of mitochondrial repair. Journal of Inherited Metabolic Disease, 32, 135–142.

    Article  PubMed  Google Scholar 

  • Verkaart, S., Koopman, W. J. H., Sjenet, E., et al. (2007). Superoxide production is inversely related to complex I activity in inherited complex I deficiency. Biochimica et Biophysica Acta, 1772, 373–381.

    PubMed  CAS  Google Scholar 

  • Walsh, R., Conway, H., Roche, G., & Mayne, P. D. (1999). What is the origin of 3-methylglutaconic acid? Journal of Inherited Metabolic Disease, 22, 252–255.

    Article  Google Scholar 

  • Wolf, N. I., & Smeitink, J. A. M. (2002). Mitochondrial disorders: A proposal for consensus diagnostic criteria in infants and children. Neurology, 59, 1402–1405.

    PubMed  Google Scholar 

  • Wortmann, S., Rodenburg, R. J., Huizing, M., et al. (2005). Association of 3-methylglutaconic aciduria with sensori-neural deafness, encephalopathy, and Leigh-like syndrome (MEGDEL association) in four patients with a disorder of the oxidative phosphorylation. Molecular Genetics and Metabolism, 88, 47–52.

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. M. Duran from the Laboratory for Genetic and Metabolic Diseases, Amsterdam Medical Centre (AMC), The Netherlands, for valuable comments on the original manuscript. This study formed part of BioPAD Project BPP007, funded by the South African Department of Science and Technology. Additional financial support from North-West University is likewise acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolus J. Reinecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinecke, C.J., Koekemoer, G., van der Westhuizen, F.H. et al. Metabolomics of urinary organic acids in respiratory chain deficiencies in children. Metabolomics 8, 264–283 (2012). https://doi.org/10.1007/s11306-011-0309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0309-0

Keywords

Navigation