Skip to main content

Advertisement

Log in

Carnitine and acylcarnitine profiles in dried blood spots of patients with acute myocardial infarction

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Earlier studies have suggested an important role of carnitine pathway in cardiovascular pathology. However, the redistribution of carnitine and acylcarnitine pools, as a result of altered carnitine metabolism, is not clearly known in patients with acute myocardial infarction (AMI). We compared the carnitine and acylcarnitine profiles of 65 AMI patients, including 26 ST-elevated myocardial infarction (STEMI) and 39 non-ST-elevated myocardial infarction (NSTEMI), 28 patients with chest pain and 154 normal controls. The levels of carnitine and acylcarnitines in the blood spots were determined using LC-MS/MS. Total and free carnitine levels were significantly higher in all the patient groups in the following order: STEMI > NSTEMI > chest pain. The levels of short- and medium-chain acylcarnitines were significantly higher in patient groups. Among the long-chain acylcarnitines, C14:2 and C16:1 levels were significantly increased in STEMI and NSTEMI. The ratio of free carnitine to short-chain or medium-chain acylcarnitines was significantly decreased in STEMI, NSTEMI and chest pain patients however a significant increase was observed in the ratio of carnitine to long-chain acylcarnitines in all the patient groups as compared to normal controls. In conclusion, alterations in carnitine and acylcarnitine levels in the blood of AMI patients indicate the possibility of impaired carnitine homeostasis in ischemic myocardium. The clinical implications of these findings for the risk screening or diagnosis and prognosis of AMI require additional follow-up studies on large number of patients. We also suggest that a dual-marker strategy using carnitine (longer plasma half-life) in combination with troponin (shorter plasma half-life) could be a more promising biomarker strategy in risk stratification of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarsetoey, H., Aarsetoey, R., Lindner, T., Staines, H., Harris, W. S., & Nilsen, D. W. (2011). Low levels of the omega-3 index are associated with sudden cardiac arrest and remain stable in survivors in the subacute phase. Lipids, 46, 151–161.

    Article  CAS  PubMed  Google Scholar 

  • Adams, S. H., Hoppel, C. L., Lok, K. H., Zhao, L., Wong, S. W., Minkler, P. E., et al. (2009). Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. Journal of Nutrition, 139, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  • Alpert, J. S., Thygesen, K., Antman, E., & Bassand, J. P. (2000). Myocardial infarction redefined: A consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Journal of the American College of Cardiology, 36, 959–969.

    Article  CAS  PubMed  Google Scholar 

  • Aoyagi, T., Sugiura, S., Eto, Y., et al. (1997). Inhibition of carnitine synthesis protects against left ventricular dysfunction in rats with myocardial ischemia. Journal of Cardiovascular Pharmacology, 30, 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Barns, R. J., Bowling, F. G., Brown, G., Clague, A. E., & Thompson, A. (1991). Carnitine in dried blood spots: A method suitable for neonatal screening. Clinica Chimica Acta, 197, 27–33.

    Article  CAS  Google Scholar 

  • Bartels, G. L., Remme, W. J., Pillay, M., Schönfeld, D. H., & Kruijssen, D. A. (1994). Effects of l-propionylcarnitine on ischemia-induced myocardial dysfunction in men with angina pectoris. American Journal of Cardiology, 74, 125–130.

    Article  CAS  PubMed  Google Scholar 

  • Berthiaume, J. M., Young, M. E., Chen, X., McElfresh, T. A., Yu, X., & Chandler, M. P. (2012). Normalizing the metabolic phenotype after myocardial infarction: Impact of subchronic high fat feeding. Journal of Molecular and Cellular Cardiology, 53, 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Bieber, L. L. (1988). Carnitine. Annual Review of Biochemistry, 57, 261–283.

    Article  CAS  PubMed  Google Scholar 

  • Bohmer, T., Eiklid, K., & Jonsen, J. (1977). Carnitine uptake into human heart cells in culture. Biochimica et Biophysica Acta, 465, 627–633.

    Article  CAS  PubMed  Google Scholar 

  • Breitling, L. P., Rothenbacher, D., Grandi, N. C., März, W., & Brenner, H. (2011). Prognostic usefulness of free fatty acids in patients with stable coronary heart disease. American Journal of Cardiology, 108, 508–513.

    Article  CAS  PubMed  Google Scholar 

  • Bressler, R., Gay, R., Copeland, J. G., Bahl, J. J., Bedotto, J., & Goldman, S. (1989). Chronic inhibition of fatty acid oxidation: New model of diastolic dysfunction. Life Sciences, 44, 1897–1906.

    Article  CAS  PubMed  Google Scholar 

  • Buja, L. M. (1991). Lipid abnormalities in myocardial cell injury. Trends in Cardiovascular Medicine, 1, 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Y., Wang, Y. X., Liu, C. J., Wang, L. X., Han, Z. W., & Wang, C. B. (2009). Comparison of pharmacokinetics of l-carnitine, acetyl-l-carnitine and propionyl-l-carnitine after single oral administration of l-carnitine in healthy volunteers. Clinical and Investigative Medicine, 32, E13–E19.

    CAS  PubMed  Google Scholar 

  • Chiu, K. M., Schmidt, M. J., Havighurst, T. C., Shug, A. L., Daynes, R. A., Keller, E. T., et al. (1999). Correlation of serum l-carnitine and dehydro-epiandrosterone sulphate levels with age and sex in healthy adults. Age and Ageing, 28, 211–216.

    Article  CAS  PubMed  Google Scholar 

  • Covino, M., Simeoni, B., Montalto, M., et al. (2012). Reduced performance of Troponin T for acute coronary syndromes diagnosis in the elderly and very elderly patients: a retrospective study of 2688 patients. European Review for Medical and Pharmacological Sciences, 16(Suppl 1), 8–15.

    PubMed  Google Scholar 

  • Davini, P., Bigalli, A., Lamanna, F., & Boem, A. (1992). Controlled study on l-carnitine therapeutic efficacy in post-infarction. Drugs Under Experimental and Clinical Research, 18, 355–365.

    CAS  PubMed  Google Scholar 

  • DiDonato, S., Garavaglia, B., Rimoldi, M., & Carrara, F. (1992). Clinical and biomedical phenotypes of carnitine deficiencies. In R. Ferrari, S. Dimauro, & G. Sherwood (Eds.), l -carnitine and its role on medicine (pp. 81–98). London: Academic Press.

    Google Scholar 

  • Ford, D. A., Han, X., Horner, C. C., & Gross, R. W. (1996). Accumulation of unsaturated acylcarnitine molecular species during acute myocardial ischemia: Metabolic compartmentalization of products of fatty acyl chain elongation in the acylcarnitine pool. Biochemistry, 35, 7903–7909.

    Article  CAS  PubMed  Google Scholar 

  • Galan, P., Kesse-Guyot, E., Czernichow, S., Briancon, S., Blacher, J., Hercberg, S., et al. (2010). Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: a randomised placebo controlled trial. BMJ, 341, c6273.

    Article  PubMed  Google Scholar 

  • Haltern, G., Peiniger, S., Bufe, A., Reiss, G., Gülker, H., & Scheffold, T. (2010). Comparison of usefulness of heart-type fatty acid binding protein versus cardiac troponin T for diagnosis of acute myocardial infarction. American Journal of Cardiology, 105, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson, S. C., St Louis, J. D., Lowe, J. E., & Abdel-aleem, S. (1997). Free fatty acid metabolism during myocardial ischemia and reperfusion. Molecular and Cellular Biochemistry, 166, 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Hernandiz Martínez, A., Pallares Carratala, V., Cosín Aguilar, J., et al. (1997). Effects of l-carnitine on the regional function of the stunned myocardium caused by ischemia of short duration. Revista Espanola de Cardiologia, 50, 650–657.

    Article  PubMed  Google Scholar 

  • Hoppel, C. (2003). The role of carnitine in normal and altered fatty acid metabolism. American Journal of Kidney Diseases, 41, S4–S12.

    Article  CAS  PubMed  Google Scholar 

  • Ino, T., Sherwood, W. G., Benson, L. N., Wilson, G. J., Freedom, R. M., & Rowe, R. D. (1988). Cardiac manifestations in disorders of fat and carnitine metabolism in infancy. Journal of the American College of Cardiology, 11, 1301–1308.

    Article  CAS  PubMed  Google Scholar 

  • Kanna, M., Nonogi, H., Sumida, H., et al. (2001). Usefulness of serum troponin T levels on day three or four in predicting survival after acute myocardial infarction. American Journal of Cardiology, 87, 294–297.

    Article  CAS  PubMed  Google Scholar 

  • Kar, S., & Webel, R. (2012). Fish oil supplementation and coronary artery disease: does it help? Molecular Medicine, 109, 142–145.

    Google Scholar 

  • Katus, H. A., Remppis, A., Looser, S., Hallermeier, K., Scheffold, T., & Kubler, W. (1989). Enzyme linked immune assay of cardiac troponin T for the detection of acute myocardial infarction in patients. Journal of Molecular and Cellular Cardiology, 21, 1349–1353.

    Article  CAS  PubMed  Google Scholar 

  • Katus, H. A., Remppis, A., Scheffold, T., Diederich, K. W., & Kuebler, W. (1991). Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. American Journal of Cardiology, 67, 1360–1367.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. J., Jeong, D. W., Lee, J. G., et al. (2012). Omega-3 index and smoking in patients with acute ST-elevation myocardial infarction taking statins: A case-control study in Korea. Lipids in Health and Disease, 11, 43.

    Article  CAS  PubMed  Google Scholar 

  • Kromhout, D., Geleijnse, J. M., de Goede, J., et al. (2011). n-3 Fatty acids, ventricular arrhythmia-related events, and fatal myocardial infarction in postmyocardial infarction patients with diabetes. Diabetes Care, 34, 2515–2520.

    Article  CAS  PubMed  Google Scholar 

  • Levitan, E. B., Wolk, A., & Mittleman, M. A. (2010). Fatty fish, marine omega-3 fatty acids and incidence of heart failure. European Journal of Clinical Nutrition, 64, 587–594.

    Article  CAS  PubMed  Google Scholar 

  • Li, K., Sun, Q. B., Liu, X. Z., & Shi, Y. H. (2009). Correlation of serum carnitine levels with age and sex among Chinese adults in Nanjing. Zhonghua Nan Ke Xue, 15, 337–340.

    CAS  PubMed  Google Scholar 

  • Liepinsh, E., Vilskersts, R., Loca, D., Kirjanova, O., Pugovichs, O., Kalvinsh, I., et al. (2006). Mildronate, an inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction. Journal of Cardiovascular Pharmacology, 48, 314–319.

    Article  CAS  PubMed  Google Scholar 

  • Lyck Hansen, M., Saaby, L., Nybo, M., Rasmussen, L. M., Thygesen, K., Mickley, H., et al. (2012). Discordant diagnoses of acute myocardial infarction due to the different use of assays and cut-off points of cardiac troponins. Cardiology, 122, 225–229.

    Article  PubMed  Google Scholar 

  • Marquis, N. R., & Fritz, I. B. (1964). Enzymological determination of free carnitine concentrations in rat tissues. Journal of Lipid Research, 5, 184–187.

    CAS  PubMed  Google Scholar 

  • Masson, S., Anand, I., Favero, C., et al. (2012). Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: Data from 2 large randomized clinical trials. Circulation, 125, 280–288.

    Article  CAS  PubMed  Google Scholar 

  • Millington, D. S., Kodo, N., Norwood, D. L., & Roe, C. R. (1990). Tandem mass spectrometry: A new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. Journal of Inherited Metabolic Disease, 13, 321–324.

    Article  CAS  PubMed  Google Scholar 

  • Moe, K. T., & Wong, P. (2010). Current trends in diagnostic biomarkers of acute coronary syndrome. Annals of the Academy of Medicine Singapore, 39, 210–215.

    Google Scholar 

  • Moselhy, S. S., & Demerdash, S. H. (2009). Serum free l-carnitine in association with myoglobin as a diagnostic marker of acute myocardial infarction. Clinical Biochemistry, 42, 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Narin, F., Narin, N., Andaç, H., Ergin, A., Coşkun, A., Ustdal, M., et al. (1997). Carnitine levels in patients with chronic rheumatic heart disease. Clinical Biochemistry, 30, 643–645.

    Article  CAS  PubMed  Google Scholar 

  • Olivieri, F., Galeazzi, R., Giavarina, D., et al. (2012). Aged-related increase of high sensitive Troponin T and its implication in acute myocardial infarction diagnosis of elderly patients. Mechanisms of Ageing and Development, 133, 300–305.

    Article  CAS  PubMed  Google Scholar 

  • Paulson, D. J., Schmidt, M. J., Traxler, J. S., Ramacci, M. T., & Shug, A. L. (1984). Improvement of myocardial function in diabetic rats after treatment with l-carnitine. Metabolism, 33, 358–363.

    Article  CAS  PubMed  Google Scholar 

  • Pauly, D. F., & Pepine, C. J. (2003). The role of carnitine in myocardial dysfunction. American Journal of Kidney Diseases, 41, S35–S43.

    Article  CAS  PubMed  Google Scholar 

  • Ramsden, C. E., Hibbeln, J. R., Majchrzak, S. F., & Davis, J. M. (2010). n-6 Fatty acid-specific and mixed polyunsaturate dietary interventions have different effects on CHD risk: A meta-analysis of randomised controlled trials. British Journal of Nutrition, 104, 1586–1600.

    Article  CAS  PubMed  Google Scholar 

  • Regitz, V., & Fleck, E. (1992). Role of carnitine in heart failure. In R. Ferrari, S. Dimauro, & G. Sherwood (Eds.), l -carnitine and its role on medicine (pp. 295–323). London: Academic Press.

    Google Scholar 

  • Regitz, V. R., Shug, A. L., & Fleck, E. (1990). Defective myocardial carnitine metabolism in congestive heart failure secondary to dilated cardiomyopathy and coronary, hypertensive, and valvular diseases. American Journal of Cardiology, 65, 755–760.

    Article  CAS  PubMed  Google Scholar 

  • Regitz, V., Shug, A. L., Schüler, S., Yankah, C., Hetzer, R., & Fleck, E. (1988). Heart failure in dilated cardiomyopathy and coronary heart disease. The contribution of biochemical parameters to assessing the prognosis. Deutsche Medizinische Wochenschrift, 113, 781–786.

    Article  CAS  PubMed  Google Scholar 

  • Rizzon, P., Biasco, G., Di Biase, M., et al. (1989). High doses of l-carnitine in acute myocardial infarction: Metabolic and antiarrhythmic effects. European Heart Journal, 10, 502–508.

    CAS  PubMed  Google Scholar 

  • Roe, C. R., Millington, D. S., Maltby, D. A., Bohan, T. P., & Hoppel, C. L. (1984). l-carnitine enhances excretion of propionyl coenzyme A as propionylcarnitine in propionic acidemia. Journal of Clinical Investigation, 73, 1785–1788.

    Article  CAS  PubMed  Google Scholar 

  • Roe, C. R., Millington, D. S., Maltby, D. A., Bohan, T. P., Kahler, S. G., & Chalmers, R. A. (1985). Diagnostic and therapeutic implications of medium-chain acylcarnitines in the medium-chain acyl-coA dehydrogenase deficiency. Pediatric Research, 19, 459–466.

    Article  CAS  PubMed  Google Scholar 

  • Roger, V. L. (2007). Epidemiology of myocardial infarction. Medical Clinics of North America, 91, 537–552.

    Article  PubMed  Google Scholar 

  • Rondeau, I., Picard, S., Bah, T. M., Roy, L., Godbout, R., & Rousseau, G. (2011). Effects of different dietary ω-6/3 polyunsaturated fatty acids ratios on infarct size and the limbic system after myocardial infarction. Canadian Journal of Physiology and Pharmacology, 89, 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Samuel, S., Peskin, B., Arondekar, B., Alperin, P., Johnson, S., Blumenfeld, I., et al. (2011). Estimating health and economic benefits from using prescription omega-3 fatty acids in patients with severe hypertriglyceridemia. American Journal of Cardiology, 108, 691–697.

    Article  CAS  PubMed  Google Scholar 

  • Sartorelli, L., Ciman, M., Rizzoli, V., & Siliprandi, N. (1982). On the transport mechanisms of carnitine and its derivative in rat heart slices. Italian Journal of Biochemistry, 31, 261–268.

    CAS  PubMed  Google Scholar 

  • Schmidt-Sommerfeld, E., Werner, D., & Penn, D. (1988). Carnitine plasma concentrations in 353 metabolically healthy children. European Journal of Pediatrics, 147, 356–360.

    Article  CAS  PubMed  Google Scholar 

  • Shah, S. H., Sun, J. L., Stevens, R. D., et al. (2012). Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. American Heart Journal, 163(844–850), e1.

    PubMed  Google Scholar 

  • Siliprandi, N., Di Lisa, F., Pivetta, A., Miotto, G., & Siliprandi, D. (1987). Transport and function of l-carnitine and l-propionylcarnitine: Relevance to some cardiomyopathies and cardiac ischemia. Zeitschrift fur Kardiologie, 76, 34–40.

    CAS  PubMed  Google Scholar 

  • Singh, R. B., Niaz, M. A., Agarwal, P., Beegum, R., Rastogi, S. S., & Sachan, D. S. (1996). A randomised, double-blind, placebo-controlled trial of l-carnitine in suspected acute myocardial infarction. Postgraduate Medical Journal, 72, 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Sirolli, V., Rossi, C., Di Castelnuovo, A., et al. (2012). Toward personalized hemodialysis by low molecular weight amino-containing compounds: future perspective of patient metabolic fingerprint. Blood Transfusion, 10(Suppl 2), s78–s88.

    PubMed  Google Scholar 

  • Solfrizzi, V., Capurso, C., Colacicco, A. M., et al. (2006). Efficacy and tolerability of combined treatment with l-carnitine and simvastatin in lowering lipoprotein(a) serum levels in patients with type 2 diabetes mellitus. Atherosclerosis, 188, 455–461.

    Article  CAS  PubMed  Google Scholar 

  • Takiyama, N., & Matsumoto, K. (1998). Age-and sex-related differences of serum carnitine in a Japanese population. Journal of the American College of Nutrition, 17, 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Tarantini, G., Scrutinio, D., Bruzzi, P., Boni, L., Rizzon, P., & Iliceto, S. (2006). Metabolic treatment with l-carnitine in acute anterior ST segment elevation myocardial infarction. A randomized controlled trial. Cardiology, 106, 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Tegalaers, F. P. W., Pickkers, M. M. G., & Seelen, P. J. (1989). Effect of deproteinization and reagent buffer on the enzymatic assay of l-carnitine in serum. Journal of Clinical Chemistry and Clinical Biochemistry, 27, 967–972.

    Google Scholar 

  • Tripp, M. E., & Shug, A. L. (1984). Plasma carnitine concentrations in cardiomyopathy patients. Biochemical Medicine, 32, 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Vernez, L., Dickenmann, M., Steiger, J., Wenk, M., & Krähenbühl, S. (2006). Effect of l-carnitine on the kinetics of carnitine, acylcarnitines and butyrobetaine in long-term haemodialysis. Nephrology Dialysis Transplantation, 21, 450–458.

    Article  CAS  Google Scholar 

  • Whitmer, J. T. (1987). l-carnitine treatment improves cardiac performance and restores high-energy phosphate pools in cardiomyopathic Syrian hamster. Circulation Research, 61, 396–408.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J. H., Lemaitre, R. N., Imamura, F., King, I. B., Song, X., Spiegelman, D., et al. (2011). Fatty acids in the de novo lipogenesis pathway and risk of coronary heart disease: The Cardiovascular Health Study. American Journal of Clinical Nutrition, 94, 431–438.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Y. Z., Wang, L. X., Liu, H. Z., Qi, X. W., Wang, X. H., & Ren, H. Z. (2007). l-carnitine as an adjunct therapy to percutaneous coronary intervention for non-ST elevation myocardial infarction. Cardiovascular Drugs and Therapy, 21, 445–448.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, K. A., McHowat, J., Yan, G. X., Donahue, K., Peirick, J., Kléber, A. G., et al. (1994). Cellular uncoupling induced by accumulation of long-chain acylcarnitine during ischemia. Circulation Research, 74, 83–95.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, H. R., Hong, Y. M., Boriack, R. L., & Bennett, M. J. (2003). Effect of l-carnitine supplementation on cardiac carnitine palmitoyltransferase activities and plasma carnitine concentrations in adriamycin-treated rats. Pediatric Research, 53, 788–792.

    Article  CAS  PubMed  Google Scholar 

  • Zeghichi-Hamri, S., de Lorgeril, M., Salen, P., Chibane, M., de Leiris, J., Boucher, F., et al. (2010). Protective effect of dietary n-3 polyunsaturated fatty acids on myocardial resistance to ischemia-reperfusion injury in rats. Nutrition Research, 30, 849–857.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Plan for Science and Technology (NPST) Program by King Saud University Project Number 08-BIO571-02. We thank Dr. Syed Shahid Habib and Dr. Abdulrahman Al Moughairi for clinical observations. The technical assistance of Adnan Ali Khan for data management, and nursing staff of King Khalid University Hospital, Prince Sultan Cardiac Center and Military Medical City, Riyadh for sample collection and patient care are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haseeb Ahmad Khan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, H.A., Alhomida, A.S., Madani, H.A. et al. Carnitine and acylcarnitine profiles in dried blood spots of patients with acute myocardial infarction. Metabolomics 9, 828–838 (2013). https://doi.org/10.1007/s11306-013-0505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0505-1

Keywords

Navigation