Skip to main content
Log in

Identification of urinary biomarkers after consumption of sea buckthorn and strawberry, by untargeted LC–MS metabolomics: a meal study in adult men

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Berries may improve health; however, accurate assessment of berry intake is still problematic. The discovery of objective biomarkers for intake of berries is therefore important in assessing both intake and compliance. We aimed to identify urinary exposure markers of two very different berries, strawberry and sea buckthorn, in humans. A randomized controlled single-blinded three-way cross-over meal study was conducted in 16 overweight men. The intervention meals consisted of sea buckthorn puree, strawberry puree or an iso-caloric control drink. Urine samples were collected on each test day at t = −15 min, t = 0–1 h, t = 1–2 h, and t = 2–24 h and were analyzed by untargeted metabolomics. Multivariate analysis was applied to discover markers, followed by molecular fragmentation to ease their chemical identification. Only a few common markers appeared for the two berries, and all except one were in very low concentrations and therefore not identified. Nine and 11 markers were (tentatively) identified for strawberry and sea buckthorn, respectively, the most specific being conjugates of aroma compounds and coloring flavonoids. Metabolites reflecting the step-wise aromatization of quinic to hippuric acid were observed after sea buckthorn intake. Three of the identified compounds validate previously proposed exposure biomarkers for the New Nordic Diet, which is high in berries. Potentially common berry exposure markers, as well as an aromatization pathway have been distinguished by human urine profiling after consumption of sea buckthorn or strawberries. Combinations of these markers are proposed as potentially specific for intake of each of these berries, but need further validation in larger and less-controlled study settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afendi, F. M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, Y., et al. (2012). KNApSAcK family databases: integrated metabolite–plant species databases for multifaceted plant research. Plant and Cell Physiology, 53(2), e1.

    Article  CAS  PubMed  Google Scholar 

  • Aharoni, A., de Vos, C. R., Verhoeven, H. A., Maliepaard, C. A., Kruppa, G., Bino, R., & Goodenowe, D. B. (2002). Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. Omics: A Journal of Integrative Biology, 6(3), 217–234.

  • Andersen, M.-B. S., Kristensen, M., Manach, C., Pujos-Guillot, E., Poulsen, S. K., Larsen, T. M., et al. (2014a). Discovery and validation of urinary exposure markers for different plant foods by untargeted metabolomics. Analytical and Bioanalytical Chemistry, 406(7), 1829–1844.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, M. S., Reinbach, H. C., Rinnan, Å., Barri, T., Mithril, C., & Dragsted, L. O. (2013). Discovery of exposure markers in urine for Brassica-containing meals served with different protein sources by UPLC-qTOF-MS untargeted metabolomics. Metabolomics, 9(5), 984–997.

    Article  CAS  Google Scholar 

  • Andersen, M. S., Rinnan, Å., Manach, C., Poulsen, S. K., Pujos-Guillot, E., Larsen, T. M., et al. (2014b). Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. Journal of Proteome Research, 13(3), 1405–1418.

    Article  CAS  PubMed  Google Scholar 

  • Anson, N. M., Aura, A., Selinheimo, E., Mattila, I., Poutanen, K., van den Berg, R., et al. (2011). Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo. The Journal of Nutrition, 141(1), 137–143.

    Article  CAS  Google Scholar 

  • Babior, B. M., & Bloch, K. (1966). Aromatization of cyclohexanecarboxylic acid. Journal of Biological Chemistry, 241(16), 3643–3651.

    CAS  PubMed  Google Scholar 

  • Barri, T., Holmer-Jensen, J., Hermansen, K., & Dragsted, L. O. (2012). Metabolic fingerprinting of high-fat plasma samples processed by centrifugation-and filtration-based protein precipitation delineates significant differences in metabolite information coverage. Analytica Chimica Acta, 718, 47–57.

    Article  CAS  PubMed  Google Scholar 

  • Beer, C., Dickens, F., & Pearson, J. (1951). The aromatization of hydrogenated derivatives of benzoic acid in animal tissues. Biochemical Journal, 48(2), 222–237.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bingham, S. A. (2002). Biomarkers in nutritional epidemiology. Public Health Nutrition, 5(6A), 821–828.

    Article  PubMed  Google Scholar 

  • Boeing, H., Bechthold, A., Bub, A., Ellinger, S., Haller, D., Kroke, A., et al. (2012). Critical review: Vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition, 51(6), 637–663.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brewster, D., Jones, R. S., & Parke, D. V. (1977). The metabolism of cyclohexanecarboxylate in the rat. Biochemical Journal, 164, 595–600.

  • Carkeet, C., Clevidence, B. A., & Novotny, J. A. (2008). Anthocyanin excretion by humans increases linearly with increasing strawberry dose. The Journal of Nutrition, 138(5), 897–902.

    CAS  PubMed  Google Scholar 

  • Cerdá, B., Tomás-Barberán, F. A., & Espín, J. C. (2005). Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: Identification of biomarkers and individual variability. Journal of Agricultural and Food Chemistry, 53(2), 227–235.

    Article  PubMed  Google Scholar 

  • Chong, I., & Jun, C. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1), 103–112.

    Article  CAS  Google Scholar 

  • Clegg, M. E., Pratt, M., Meade, C. M., & Henry, C. J. K. (2011). The addition of raspberries and blueberries to a starch-based food does not alter the glycaemic response. British Journal of Nutrition, 106(03), 335–338.

    Article  CAS  PubMed  Google Scholar 

  • Cotran, R., Kendrick, M. I., & Kass, E. H. (1960). Role of intestinal bacteria in aromatization of quinic acid in man and guinea pig. Experimental Biology and Medicine, 104(3), 424–426.

    Article  CAS  Google Scholar 

  • Donovan, J. L., Bell, J. R., Kasim-Karakas, S., German, J. B., Walzem, R. L., Hansen, R. J., & Waterhouse, A. L. (1999). Catechin is present as metabolites in human plasma after consumption of red wine. The Journal of Nutrition, 129(9), 1662–1668.

    CAS  PubMed  Google Scholar 

  • Donovan, J. L., Kasim-Karakas, S., German, J. B., & Waterhouse, A. L. (2002). Urinary excretion of catechin metabolites by human subjects after red wine consumption. British Journal of Nutrition, 87(01), 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Edmands, W. M., Beckonert, O. P., Stella, C., Campbell, A., Lake, B. G., Lindon, J. C., et al. (2011). Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. Journal of Proteome Research, 10(10), 4513–4521.

    Article  CAS  PubMed  Google Scholar 

  • Favé, G., Beckmann, M., Draper, J. H., & Mathers, J. C. (2009). Measurement of dietary exposure: A challenging problem which may be overcome thanks to metabolomics? Genes & nutrition, 4(2), 135–141.

    Article  Google Scholar 

  • Feldman, J. M., & Lee, E. M. (1985). Serotonin content of foods: effect on urinary excretion of 5-hydroxyindoleacetic acid. The American Journal of Clinical Nutrition, 42(4), 639–643.

    CAS  PubMed  Google Scholar 

  • Felgines, C., Talavéra, S., Gonthier, M., Texier, O., Scalbert, A., Lamaison, J., & Rémésy, C. (2003). Strawberry anthocyanins are recovered in urine as glucuro-and sulfoconjugates in humans. The Journal of Nutrition, 133(5), 1296–1301.

    CAS  PubMed  Google Scholar 

  • Gerlich, M., & Neumann, S. (2013). MetFusion: Integration of compound identification strategies. Journal of Mass Spectrometry, 48(3), 291–298.

    Article  CAS  PubMed  Google Scholar 

  • Helander, A., Wikström, T., Löwenmo, C., Jacobsson, G., & Beck, O. (1992). Urinary excretion of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophol after oral loading with serotonin. Life Sciences, 50(17), 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  • Koulman, A., & Volmer, D. (2008). Perspectives for metabolomics in human nutrition: An overview. Nutrition Bulletin, 33(4), 324–330.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kristensen, M., Engelsen, S. B., & Dragsted, L. O. (2012). LC-MS metabolomics top-down approach reveals new exposure and effect biomarkers of apple and apple-pectin intake. Metabolomics, 8(1), 64–73.

    Article  CAS  Google Scholar 

  • Krupp, D., Doberstein, N., Shi, L., & Remer, T. (2012). Hippuric acid in 24-hour urine collections is a potential biomarker for fruit and vegetable consumption in healthy children and adolescents. The Journal of Nutrition, 142(7), 1314–1320.

    Article  CAS  PubMed  Google Scholar 

  • Lehtonen, H., Lehtinen, O., Suomela, J., Viitanen, M., & Kallio, H. (2009). Flavonol glycosides of sea buckthorn (Hippophaë rhamnoides ssp. sinensis) and lingonberry (Vaccinium vitis-idaea) are bioavailable in humans and monoglucuronidated for excretion. Journal of Agricultural and Food Chemistry, 58(1), 620–627.

    Article  Google Scholar 

  • Li, L., Li, R., Zhou, J., Zuniga, A., Stanislaus, A. E., Wu, Y., & Lin, G. (2013). MyCompoundID: Using an evidence-based metabolome library for metabolite identification. Analytical Chemistry, 85(6), 3401–3408.

    Article  CAS  PubMed  Google Scholar 

  • Livsmedelsverket. (2014). The national food administration’s food database, version 30/10/2014. Uppsala, Sweden: The National Food Administration.

    Google Scholar 

  • Llorach, R., Garrido, I., Monagas, M., Urpi-Sarda, M., Tulipani, S., Bartolome, B., & Andres-Lacueva, C. (2010). Metabolomics study of human urinary metabolome modifications after intake of almond (Prunus dulcis (Mill.) DA Webb) skin polyphenols. Journal of Proteome Research, 9(11), 5859–5867.

    Article  CAS  PubMed  Google Scholar 

  • Llorach, R., Urpi-Sarda, M., Jauregui, O., Monagas, M., & Andres-Lacueva, C. (2009). An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption. Journal of Proteome Research, 8(11), 5060–5068.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, A. J., Beckmann, M., Haldar, S., Seal, C., Brandt, K., & Draper, J. (2013). Data-driven strategy for the discovery of potential urinary biomarkers of habitual dietary exposure. The American Journal of Clinical Nutrition, 97(2), 377–389.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd, A. J., Favé, G., Beckmann, M., Lin, W., Tailliart, K., Xie, L., et al. (2011). Use of mass spectrometry fingerprinting to identify urinary metabolites after consumption of specific foods. The American Journal of Clinical Nutrition, 94(4), 981–991.

    Article  CAS  PubMed  Google Scholar 

  • Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition, 81(1), 230S–242S.

    CAS  PubMed  Google Scholar 

  • Mithril, C., Dragsted, L. O., Meyer, C., Blauert, E., Holt, M. K., & Astrup, A. (2012). Guidelines for the new Nordic diet. Public Health Nutrition, 15(10), 1941–1947.

    Article  PubMed  Google Scholar 

  • Mullen, W., Edwards, C. A., Serafini, M., & Crozier, A. (2008). Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. Journal of Agricultural and Food Chemistry, 56(3), 713–719.

    Article  CAS  PubMed  Google Scholar 

  • Neveu, V., Perez-Jimenez, J., Vos, F., Crespy, V., Du Chaffaut, L., Mennen, L., et al. (2010). Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, p. bap024. Accessed 18 July 2014.

  • Nielsen, I. L. F., Haren, G. R., Magnussen, E. L., Dragsted, L. O., & Nielsen, S. E. (2003). Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH-stability and antioxidative potency. Journal of Agricultural and Food Chemistry, 51(20), 5861–5866.

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan, A., Gibney, M. J., & Brennan, L. (2011). Dietary intake patterns are reflected in metabolomic profiles: Potential role in dietary assessment studies. The American Journal of Clinical Nutrition, 93(2), 314–321.

    Article  PubMed  Google Scholar 

  • Penn, L., Boeing, H., Boushey, C. J., Dragsted, L. O., Kaput, J., Scalbert, A., et al. (2010). Assessment of dietary intake: NuGO symposium report. Genes & nutrition, 5(3), 205–213.

    Article  CAS  Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(1), 395.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rasmussen, L. G., Savorani, F., Larsen, T. M., Dragsted, L. O., Astrup, A., & Engelsen, S. B. (2011). Standardization of factors that influence human urine metabolomics. Metabolomics, 7(1), 71–83.

    Article  CAS  Google Scholar 

  • Rechner, A. R., Kuhnle, G., Hu, H., Roedig-Penman, A., van den Braak, Maarten H., Moore, K. P., & Rice-Evans, C. A. (2002). The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Radical Research, 36(11), 1229–1241.

    Article  CAS  PubMed  Google Scholar 

  • Roscher, R., Koch, H., Herderich, M., Schreier, P., & Schwab, W. (1997). Identification of 2, 5-dimethyl-4-hydroxy-3 [2H]-furanone β-d-glucuronide as the major metabolite of a strawberry flavour constituent in humans. Food and Chemical Toxicology, 35(8), 777–782.

    Article  CAS  PubMed  Google Scholar 

  • Saxholt, E., Fagt, S., Matthiessen, J., & Christensen, T. (2010). The small food composition table—4th revised edition. DTU Fødevareinstituttet, p. 54. Accessed July 2013.

  • Scalbert, A., Brennan, L., Manach, C., Andres-Lacueva, C., Dragsted, L. O., Draper, J., et al. (2014). The food metabolome: A window over dietary exposure. The American Journal of Clinical Nutrition, 99(6), 1286–1308.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27(6), 747–751.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiitinen, K. M., Hakala, M. A., & Kallio, H. P. (2005). Quality components of sea buckthorn (Hippophae rhamnoides) varieties. Journal of Agricultural and Food Chemistry, 53(5), 1692–1699.

    Article  CAS  PubMed  Google Scholar 

  • Törrönen, R., Sarkkinen, E., Tapola, N., Hautaniemi, E., Kilpi, K., & Niskanen, L. (2010). Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. British Journal of Nutrition, 103(08), 1094–1097.

    PubMed  Google Scholar 

  • Tulipani, S., Llorach, R., Jáuregui, O., López-Uriarte, P., Garcia-Aloy, M., Bullo, M., et al. (2011). Metabolomics unveils urinary changes in subjects with metabolic syndrome following 12-week nut consumption. Journal of Proteome Research, 10(11), 5047–5058.

    Article  CAS  PubMed  Google Scholar 

  • van Dorsten, F. A., Grün, C. H., van Velzen, E. J., Jacobs, D. M., Draijer, R., & van Duynhoven, J. P. (2010). The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Molecular Nutrition & Food Research, 54(7), 897–908.

    Article  Google Scholar 

  • Veselkov, K. A., Vingara, L. K., Masson, P., Robinette, S. L., Want, E., Li, J. V., et al. (2011). Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Analytical Chemistry, 83(15), 5864–5872.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. The American Journal of Clinical Nutrition, 84(3), 531–539.

    CAS  PubMed  Google Scholar 

  • Williams, A. J. (2011). Chemspider: A platform for crowdsourced collaboration to curate data derived from public compound databases. Collaborative computational technologies for biomedical research, pp. 363–386.

  • Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y. et al. (2013). HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Research, p. gks1065. Accessed 22 July 2014.

  • Woodside, J. V., Young, I. S., & McKinley, M. C. (2013). Fruits and vegetables: Measuring intake and encouraging increased consumption. Proceedings of the Nutrition Society, 72(02), 236–245.

    Article  PubMed  Google Scholar 

  • Wu, X., Cao, G., & Prior, R. L. (2002). Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. The Journal of Nutrition, 132(7), 1865–1871.

    CAS  PubMed  Google Scholar 

  • Adamson, R., Bridges, J., Evans, M., & Williams, R. (1970). Species differences in the aromatization of quinic acid in vivo and the role of gut bacteria. Biochemical Journal, 116, 437–443.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is part of the OPUS project “Optimal well-being, development and health for Danish children through a healthy New Nordic Diet.” OPUS is supported by a grant from the Nordea Foundation, Denmark. We would like to thank the study participants and the staff involved in conducting the study, preparing the meals and analyzing the samples: Pia Lisbeth Madsen, Ümmühan Celik, Daniela Rago, Jan Stanstrup and the kitchen staff at the department, especially Karina Graff Rossen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cătălina S. Cuparencu.

Ethics declarations

Conflicts of interest

All authors declared no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuparencu, C.S., Andersen, MB.S., Gürdeniz, G. et al. Identification of urinary biomarkers after consumption of sea buckthorn and strawberry, by untargeted LC–MS metabolomics: a meal study in adult men. Metabolomics 12, 31 (2016). https://doi.org/10.1007/s11306-015-0934-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-015-0934-0

Keywords

Navigation