Skip to main content

Advertisement

Log in

Comparative analysis of creatinine and osmolality as urine normalization strategies in targeted metabolomics for the differential diagnosis of asthma and COPD

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Urine is an ideal matrix for metabolomics investigation due to its non-invasive nature of collection and its rich metabolite content. Despite the advancements in mass spectrometry and 1H-NMR platforms in urine metabolomics, the statistical analysis of the generated data is challenged with the need to adjust for the hydration status of the person. Normalization to creatinine or osmolality values are the most adopted strategies, however, each technique has its challenges that can hinder its wider application. We have been developing targeted urine metabolomic methods to differentiate two important respiratory diseases, namely asthma and chronic obstructive pulmonary disease (COPD).

Objective

To assess whether the statistical model of separation of diseases using targeted metabolomic data would be improved by normalization to osmolality instead of creatinine.

Methods

The concentration of 32 metabolites was previously measured by two liquid chromatography-tandem mass spectrometry methods in 51 human urine samples with either asthma (n = 25) or COPD (n = 26). The data was normalized to creatinine or osmolality. Statistical analysis of the normalized values in each disease was performed using partial least square discriminant analysis (PLS-DA). Models of separation of diseases were compared.

Results

We found that normalization to creatinine or osmolality did not significantly change the PLS-DA models of separation (R2Q2 = 0.919, 0.705 vs R2Q2 = 0.929, 0.671, respectively). The metabolites of importance in the models remained similar for both normalization methods.

Conclusion

Our findings suggest that targeted urine metabolomic data can be normalized for hydration using creatinine or osmolality with no significant impact on the diagnostic accuracy of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamko, D. J., Nair, P., Mayers, I., Tsuyuki, R. T., Regush, S., & Rowe, B. H. (2015). Metabolomic profiling of asthma and chronic obstructive pulmonary disease: A pilot study differentiating diseases. Journal of Allergy and Clinical Immunology, 136, 571–580.e3.

    Article  PubMed  Google Scholar 

  • Adamko, D. J., Sykes, B. D., & Rowe, B. H. (2012). The metabolomics of asthma metabolomics and asthma novel diagnostic potential. CHEST Journal, 141, 1295–1302.

    Article  CAS  Google Scholar 

  • Awad, H., Allen, K., Adamko, D. J., & El-Aneed, A. (2016). Detection and quantification of 17 organic acid metabolites excreted in the urine of respiratory illness patients using a novel LC–MS/MS method. In The 21st international mass spectrometry conference (IMSC), 2016 Toronto, ON, Canada.

  • Balgoma, D., Larsson, J., Rokach, J., Lawson, J. A., Daham, K., Dahlén, B., et al. (2013). Quantification of lipid mediator metabolites in human urine from asthma patients by electrospray ionization mass spectrometry: Controlling matrix effects. Analytical Chemistry, 85, 7866–7874.

    Article  CAS  PubMed  Google Scholar 

  • Barber, T., & Wallis, G. (1986). Correction of urinary mercury concentration by specific gravity, osmolality, and creatinine. Journal of Occupational and Environmental Medicine, 28, 354–359.

    CAS  Google Scholar 

  • Barnes, P. (2011). Similarities and differences in inflammatory mechanisms of asthma and COPD. Breathe, 7, 229–238.

    Article  Google Scholar 

  • Bioassay-Systems QuantiChrom™ Creatinine Assay Kit. (2018). Retrieved June, 2018, from https://www.bioassaysys.com/Creatinine-Assay-Kit.html.

  • Chadha, V., Garg, U., & Alon, U. S. (2001). Measurement of urinary concentration: A critical appraisal of methodologies. Pediatric Nephrology, 16, 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G.-Y., Liao, H.-W., Tseng, Y. J., Tsai, I.-L., & Kuo, C.-H. (2015). A matrix-induced ion suppression method to normalize concentration in urinary metabolomics studies using flow injection analysis electrospray ionization mass spectrometry. Analytica Chimica Acta, 864, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Chetwynd, A. J., Abdul-Sada, A., Holt, S. G., & Hill, E. M. (2016). Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses. Journal of Chromatography A, 1431, 103–110.

    Article  CAS  PubMed  Google Scholar 

  • EMA. (2011). European Medicines Aagency, Committee for Medicinal Products for Human Use (CHMP), Guidelines on bioanalytical method validation.

  • Fernández-Peralbo, M., & Luque De Castro, M. (2012). Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. TrAC Trends in Analytical Chemistry, 41, 75–85.

    Article  CAS  Google Scholar 

  • Issaq, H. J., Nativ, O., Waybright, T., Luke, B., Veenstra, T. D., Issaq, E. J., et al. (2008). Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry. The Journal of urology, 179, 2422–2426.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, A. D., Miller, M. J., Beebe, K., Wulff, J. E., Evans, A. M., Miller, L. A., et al. (2016). Metabolomic profiling of human urine as a screen for multiple inborn errors of metabolism. Genetic testing and molecular biomarkers, 20, 485–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khamis, M. M., Adamko, D. J., & El-Aneed, A. (2017). Development of a validated LC–MS/MS method for the quantification of 19 endogenous asthma/COPD potential urinary biomarkers. Analytica Chimica Acta, 989, 45–58.

    Article  CAS  PubMed  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., Holmes, E., Keun, H. C., Craig, A., Pearce, J. T., et al. (2005). Summary recommendations for standardization and reporting of metabolic analyses. Nature Biotechnology, 23, 833.

    Article  CAS  PubMed  Google Scholar 

  • Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24, 69–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nobakht M. Gh, B. F., Aliannejad, R., Rezaei-Tavirani, M., Taheri, S., & Oskouie, A. A. (2014). The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers, 20, 1–12.

    Google Scholar 

  • Reid, C. N., Stevenson, M., Abogunrin, F., Ruddock, M. W., Emmert-Streib, F., Lamont, J. V., & Williamson, K. E. (2012). Standardization of diagnostic biomarker concentrations in urine: The hematuria caveat. PLoS ONE, 7, e53354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan, D., Robards, K., Prenzler, P., & Kendall, M. (2011). Recent and potential developments in the analysis of urine: A review. Analytica Chimica Acta, 684, 17–29.

    Article  CAS  Google Scholar 

  • Salek, R. M., Steinbeck, C., Viant, M. R., Goodacre, R., & Dunn, W. B. (2013). The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience, 2, 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saude, E. J., Obiefuna, I. P., Somorjai, R. L., Ajamian, F., Skappak, C., Ahmad, T., et al. (2009). Metabolomic biomarkers in a model of asthma exacerbation: Urine nuclear magnetic resonance. American Journal of Respiratory and Critical Care Medicine, 179, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Saude, E. J., Skappak, C. D., Regush, S., Cook, K., Ben-Zvi, A., Becker, A., et al. (2011). Metabolomic profiling of asthma: Diagnostic utility of urine nuclear magnetic resonance spectroscopy. Journal of Allergy and Clinical Immunology, 127, 757–764. e6.

    Article  CAS  PubMed  Google Scholar 

  • Slupsky, C. M., Rankin, K. N., Wagner, J., Fu, H., Chang, D., Weljie, A. M., et al. (2007). Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Analytical Chemistry, 79, 6995–7004.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szymańska, E., Saccenti, E., Smilde, A. K., & Westerhuis, J. A. (2012). Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 8, 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Tinkelman, D. G., Price, D. B., Nordyke, R. J., & Halbert, R. (2006). Misdiagnosis of COPD and asthma in primary care patients 40 years of age and over. Journal of Asthma, 43, 75–80.

    Article  PubMed  Google Scholar 

  • Tzortzaki, E. G., Proklou, A., & Siafakas, N. M. (2011). Asthma in the elderly: Can we distinguish it from COPD? Journal of Allergy. https://doi.org/10.1155/2011/843543

    Article  PubMed  PubMed Central  Google Scholar 

  • US-FDA. (2013). Food and Drug Administration, FDA Guidance for Industry:Bioanalytical Method Validation, DRAFT Guidance. US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research, Rockville, MD, USA. https://www.fda.gov/downloads/drugs/guidances/ucm368107.pdf.

  • Vogl, F. C., Mehrl, S., Heizinger, L., Schlecht, I., Zacharias, H. U., Ellmann, L., et al. (2016). Evaluation of dilution and normalization strategies to correct for urinary output in HPLC-HRTOFMS metabolomics. Analytical and Bioanalytical Chemistry, 408, 8483–8493.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Zhang, A., Han, Y., Wang, P., Sun, H., Song, G., et al. (2012). Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease. Molecular & Cellular Proteomics, 11, 370–380.

    Article  CAS  Google Scholar 

  • Warrack, B. M., Hnatyshyn, S., Ott, K.-H., Reily, M. D., Sanders, M., Zhang, H., & Drexler, D. M. (2009). Normalization strategies for metabonomic analysis of urine samples. Journal of Chromatography B, 877, 547–552.

    Article  CAS  Google Scholar 

  • Wheelock, C. E., Goss, V. M., Balgoma, D., Nicholas, B., Brandsma, J., Skipp, P. J., et al. (2013). Application of ‘omics technologies to biomarker discovery in inflammatory lung diseases. European Respiratory Journal, 42, 802–825.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Research, 41, D801–D807.

    Article  CAS  PubMed  Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.

    Article  CAS  Google Scholar 

  • Wu, H., Xue, R., Dong, L., Liu, T., Deng, C., Zeng, H., & Shen, X. (2009). Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Analytica Chimica Acta, 648, 98–104.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., & Li, L. (2012). Determination of total concentration of chemically labeled metabolites as a means of metabolome sample normalization and sample loading optimization in mass spectrometry-based metabolomics. Analytical Chemistry, 84, 10723–10731.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., & Li, L. (2016). Sample normalization methods in quantitative metabolomics. Journal of Chromatography A, 1430, 80–95.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, S., Yu, M., Lu, X., Huo, T., Ge, L., Yang, J., et al. (2010). Urinary metabonomic study on biochemical changes in chronic unpredictable mild stress model of depression. Clinica Chimica Acta, 411, 204–209.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Paul Lee, College of Medicine, for providing help with osmolality measurements. We would also like to thank Drs. Cockcroft and Marciniuk for access to their patients to collect the urine samples, and to Ms. Joan Dietz, RN for gaining consent and collecting clinical data.

Author information

Authors and Affiliations

Authors

Contributions

TH did the experimental work, compiled the data and generated graphs using excel. HA analyzed a subset of patient samples. MMK prepared the manuscript and statistically analyzed the data using SIMCA. AE supervised TH and MMK, facilitated the equipment for measurements, revised the manuscript and proposed reviewers for the submission. DJA conceived the idea of the work, contributed to the writing and revision of the manuscript, supervised TH, HA and MMK and statistically analyzed the data using graph prism.

Corresponding author

Correspondence to Darryl J. Adamko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and no conflict of financial interest.

Ethical approval

Collection of human urine samples from consenting participants was approved by the University of Saskatchewan Biomedical Research Ethics Board and the University of Alberta and St. Joseph’s Healthcare Hamilton Health Research Ethics Boards, (Bio#1389).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamis, M.M., Holt, T., Awad, H. et al. Comparative analysis of creatinine and osmolality as urine normalization strategies in targeted metabolomics for the differential diagnosis of asthma and COPD. Metabolomics 14, 115 (2018). https://doi.org/10.1007/s11306-018-1418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1418-9

Keywords

Navigation