Skip to main content

Advertisement

Log in

Positron Emission Tomography Studies on Binding of Central Nervous System Drugs and P-Glycoprotein Function in the Rodent Brain

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

The permeability of the blood–brain barrier (BBB) is one of the factors determining the bioavailability of drugs in the brain. The BBB only allows passage of lipophilic drugs by passive diffusion. However, some lipophilic drugs hardly enter the brain. The transmembrane protein P-glycoprotein (P-gp) is one of the carrier systems that is responsible for transportation of drugs out of the brain. P-Glycoprotein affects the pharmacokinetics of many drugs and can be inhibited by administration of modulators or competitive substrates. Identification and classification of central nervous system (CNS) drugs as P-gp substrates or inhibitors are of crucial importance in drug development. Positron emission tomography (PET) studies can play an important role in the screening process as a follow-up of high-throughput in vitro assays. Several rodent studies have shown the potential value of PET to measure the effect of P-gp on the pharmacokinetics and brain uptake of radiolabeled compounds. P-Glycoprotein-mediated effects were observed for two 5-HT1a receptor ligands, [18F]MPPF vs. [carbonyl-11C]WAY100635. Under control conditions, the specific brain uptake of [18F]MPPF is five- to eightfold lower than that of [11C]WAY100635. After cyclosporin A (CsA) modulation, [18F]MPPF uptake in the rat brain increased five- to tenfold. Cerebral uptake of [carbonyl-11C]WAY100635 was also increased by modulation, but in general the increase was lower than that observed for [18F]MPPF (two- to threefold). Brain uptake of the β-adrenergic receptor ligands [11C]carazolol and [18F]fluorocarazolol was increased in P-gp knockout mice and CsA-treated rats. Both the specific and nonspecific binding of [18F]fluorocarazolol were doubled by CsA. Cerebral uptake of [11C]carazolol in rats was much lower than that of [18F]fluorocarazolol and no specific binding was measured. After CsA modulation, the uptake of [11C]carazolol increased five- to sixfold, but this uptake was not receptor-mediated. Quantitative PET studies in rodents on P-gp functionality demonstrated a dose-dependent increase of radioligands after administration of CsA. Studies with [11C]verapamil and [11C]carvedilol showed that complete modulation was achieved at 50 mg/kg CsA. The distribution volume of [11C]carvedilol increased from 0.25 in the control study to 1.0 after full modulation with CsA. By quantitative PET measurement of P-gp function, the dose of modulators required to increase the concentration of CNS drugs may be determined, which may result in improved drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. MW Bradbury (1985) ArticleTitleThe blood–brain barrier. Transport across the cerebral endothelium Circ Res 57 213–222

    Google Scholar 

  2. B Alberts D Bray J Lewis (1989) Molecular biology of the cell EditionNumber2nd edn Garland Publishing, Inc New York

    Google Scholar 

  3. MW Bradbury (1993) ArticleTitleThe blood–brain barrier Exp Physiol 78 453–472

    Google Scholar 

  4. WM Pardridge (1995) ArticleTitleTransport of small molecules through the blood–brain barrier: Biology and methodology Adv Drug Deliv Rev 15 5–36 Occurrence Handle10.1016/0169-409X(95)00003-P

    Article  Google Scholar 

  5. WM Pardridge (1995) ArticleTitleVector-mediated peptide drug delivery to the brain Adv Drug Deliv Rev 15 109–146 Occurrence Handle10.1016/0169-409X(95)00007-T

    Article  Google Scholar 

  6. NJ Abbott IA Romero (1996) ArticleTitleTransporting therapeutics across the blood–brain barrier Mol Med Today 2 106–113 Occurrence Handle10.1016/1357-4310(96)88720-X

    Article  Google Scholar 

  7. DJ Begley (1996) ArticleTitleThe blood–brain barrier: Principles for targeting peptides and drugs to the central nervous system J Pharm Pharmacol 48 136–146

    Google Scholar 

  8. BB Johansson (1990) ArticleTitleThe physiology of the blood–brain barrier Adv Exp Med Biol 274 25–39

    Google Scholar 

  9. LR Drewes (1999) ArticleTitleWhat is the blood–brain barrier? A molecular perspective. Cerebral vascular biology Adv Exp Med Biol 474 111–122

    Google Scholar 

  10. DJ Begley (1992) ArticleTitleThe interaction of some centrally active drugs with the blood–brain barrier and circumventricular organs Prog Brain Res 91 163–169

    Google Scholar 

  11. P Borst AH Schinkel (1996) ArticleTitleWhat have we learnt thus far from mice with disrupted P-glycoprotein genes? Eur J Cancer 32A 985–990 Occurrence Handle10.1016/0959-8049(96)00063-9 Occurrence Handle1:CAS:528:DyaK28XksVOnt7g%3D Occurrence Handle8763339

    Article  CAS  PubMed  Google Scholar 

  12. CS Hughes SL Vaden CA Manaugh (1998) ArticleTitleModulation of doxorubicin concentration by cyclosporin A in brain and testicular barrier tissues expressing P-glycoprotein in rats J Neurooncol 37 45–54 Occurrence Handle10.1023/A:1005900908540

    Article  Google Scholar 

  13. AH Schinkel E Wagenaar CA Mol (1996) ArticleTitleP-Glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs J Clin Invest 97 2517–2524 Occurrence Handle1:CAS:528:DyaK28XjsFKjs7Y%3D Occurrence Handle8647944

    CAS  PubMed  Google Scholar 

  14. J Asperen ParticleVan AH Schinkel JH Beijnen (1996) ArticleTitleAltered pharmacokinetics of vinblastine in Mdr1a P-glycoprotein-deficient Mice J Natl Cancer Inst 88 994–999

    Google Scholar 

  15. J Asperen ParticleVan U Mayer O Tellingen Particlevan (1997) ArticleTitleThe functional role of P-glycoprotein in the blood–brain barrier J Pharm Sci 86 881–884 Occurrence Handle10.1021/js9701364 Occurrence Handle9269863

    Article  PubMed  Google Scholar 

  16. N Kartner JR Riordan V Ling (1983) ArticleTitleCell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines Science 221 1285–1288

    Google Scholar 

  17. MM Gottesman I Pastan (1993) ArticleTitleBiochemistry of multidrug resistance mediated by the multidrug transporter Ann Rev Biochem 62 385–427 Occurrence Handle10.1146/annurev.bi.62.070193.002125

    Article  Google Scholar 

  18. AH Schinkel (1997) ArticleTitleThe physiological function of drug-transporting P-glycoproteins Semin Cancer Biol 8 161–170 Occurrence Handle10.1006/scbi.1997.0068

    Article  Google Scholar 

  19. J Bart HJM Groen NH Hendrikse WTA Graaf Particlevan der W Vaalburg EGE Vries Particlede (2000) ArticleTitleThe blood–brain barrier and oncology: New insights into function and modulation Cancer Treat Rev 26 449–462 Occurrence Handle10.1053/ctrv.2000.0194

    Article  Google Scholar 

  20. W Löscher H Potschka (2002) ArticleTitleRole of multidrug transporters in pharmacoresistance to antiepileptic drugs J Pharmacol Exp Ther 301 7–14 Occurrence Handle10.1124/jpet.301.1.7

    Article  Google Scholar 

  21. E Hofsli J Nissen-Meyer (1990) ArticleTitleReversal of multidrug resistance by lipophilic drugs Cancer Res 50 3997–4002

    Google Scholar 

  22. HL Pearce MA Winter WT Beck (1990) ArticleTitleStructural characteristics of compounds that modulate P-glycoprotein-associated multidrug resistance Adv Enzyme Regul 30 357–373 Occurrence Handle10.1016/0065-2571(90)90026-X

    Article  Google Scholar 

  23. L Jette GF Murphy JM Leclerc (1995) ArticleTitleInteraction of drugs with P-glycoprotein in brain capillaries Biochem Pharmacol 50 1701–1709 Occurrence Handle10.1016/0006-2952(95)02073-X

    Article  Google Scholar 

  24. FJ Sharom (1997) ArticleTitleThe P-glycoprotein efflux pump: How does it transport drugs? J Membr Biol 160 161–175 Occurrence Handle10.1007/s002329900305

    Article  Google Scholar 

  25. K Ueda Y Taguchi M Morishima (1997) ArticleTitleHow does P-glycoprotein recognize its substrates? Semin Cancer Biol 8 151–159 Occurrence Handle10.1006/scbi.1997.0066

    Article  Google Scholar 

  26. AB Pawagi J Wang M Silverman (1994) ArticleTitleTransmembrane aromatic amino acid distribution in P-glycoprotein. A functional role in broad substrate specificity J Mol Biol 235 554–564 Occurrence Handle10.1006/jmbi.1994.1013

    Article  Google Scholar 

  27. S Ekins RB Kim BF Leake et al. (2002) ArticleTitleThree-dimensional quantitative structure–activity relationships of inhibitors of P-glycoprotein Mol Pharmacol 61 964–973 Occurrence Handle10.1124/mol.61.5.964

    Article  Google Scholar 

  28. IK Pajeva M Wiese (2002) ArticleTitlePharmacophore model of drugs involved in P-glycoprotein multidrug resistance: Explanation of structural variety (hypothesis) J Med Chem 45 5671–5686 Occurrence Handle10.1021/jm020941h

    Article  Google Scholar 

  29. W Niederberger M Lemaire G Maurer (1983) ArticleTitleDistribution and binding of cyclosporine in blood and tissues Transplant Proc 15 2419–2421

    Google Scholar 

  30. J Greenwood (1992) ArticleTitleCharacterization of a rat retinal endothelial cell culture and the expression of P-glycoprotein in brain and retinal endothelium in vitro J Neuroimmunol 39 123–132 Occurrence Handle10.1016/0165-5728(92)90181-J

    Article  Google Scholar 

  31. C Cordon-Cardo JP O’Brien D Casals (1989) ArticleTitleMultidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites Proc Natl Acad Sci U S A 86 695–698

    Google Scholar 

  32. I Sugawara H Hamada T Tsuruo (1990) ArticleTitleSpecialized localization of P-glycoprotein recognized by MRK 16 monoclonal antibody in endothelial cells of the brain and the spinal cord Jpn J Cancer Res 81 727–730

    Google Scholar 

  33. E Beaulieu M Demeule L Ghitescu (1997) ArticleTitleP-Glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain Biochem J 326 IssueIDPt 2 539–544

    Google Scholar 

  34. PL Golden WM Pardridge (1999) ArticleTitleP-Glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries Brain Res 819 143–146 Occurrence Handle10.1016/S0006-8993(98)01305-5

    Article  Google Scholar 

  35. T Tatsuta M Naito T Oh-hara (1992) ArticleTitleFunctional involvement of P-glycoprotein in blood–brain barrier J Biol Chem 267 20383–20391

    Google Scholar 

  36. F Thiebaut T Tsuruo H Hamada MM Gottesman I Pastan MC Willingham (1987) ArticleTitleCellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues Proc Natl Acad Sci U S A 84 7735–7738 Occurrence Handle1:CAS:528:DyaL2sXmtlels7k%3D Occurrence Handle2444983

    CAS  PubMed  Google Scholar 

  37. BM Metha A Levchenko E Rosa SW Kim S Winnick JJ Zhang H Kalaigian SM Larson (1996) ArticleTitleEvaluation of carbon-14-colchicine biodistribution with whole-body quantitative autoradiography in colchicine-sensitive and -resistant xenografts J Nucl Med 37 312–314

    Google Scholar 

  38. D Schwab H Fischer A Tabatabaei S Poli J Huwyler (2003) ArticleTitleComparison of in vitro P-glycoprotein screening assays: Recommendations for their use in drug discovery J Med Chem 46 1716–1725 Occurrence Handle10.1021/jm021012t

    Article  Google Scholar 

  39. NH Hendrikse AH Schinkel EGE Vries Particlede (1998) ArticleTitleComplete in vivo reversal of P-glycoprotein pump function in the blood–brain barrier visualised with positron emission tomography Br J Pharmacol 124 1413–1418

    Google Scholar 

  40. A Levchenko BM Mehta JB Lee et al. (2000) ArticleTitleEvaluation of [11C]colchicine for PET imaging of multiple drug resistance J Nucl Med 41 493–501

    Google Scholar 

  41. PH Elsinga EJ Franssen NH Hendrikse et al. (1996) ArticleTitleCarbon-11-labeled daunorubicin and verapamil for probing P-glycoprotein in tumors with PET J Nucl Med 37 1571–1575

    Google Scholar 

  42. JS Lewis JL Dearling JK Sosabowsli et al. (2000) ArticleTitleCopper bis(diphosphine) complexes: Radiopharmaceuticals for the detection of multidrug resistance in tumours by PET Eur J Nucl Med 27 638–646 Occurrence Handle10.1007/s002590050557

    Article  Google Scholar 

  43. AB Packard JF Kronauge E Barbarics S Kiani ST Treves (2002) ArticleTitleSynthesis and biodistribution of a lipophilic 64Cu-labeled monocationic copper (II) complex Nucl Med Biol 29 289–292 Occurrence Handle10.1016/S0969-8051(02)00285-8

    Article  Google Scholar 

  44. J Passchier KWM Lawrie D Bender I Fellows AD Gee (2003) ArticleTitle[11C]Loperamide as highly sensitive PET probe for measuring changes in P-glycoprotein functionality J Lab Comp Radiopharm 46 S94

    Google Scholar 

  45. KA Kurdziel DO Kiesewetter RE Carson WC Eckelman P Herscowitch (2003) ArticleTitleBiodistribution, radiation dose estimates, and in vivo Pgp modulation studies of 18F-paclitaxel in nonhuman primates J Nucl Med 44 1330–1339

    Google Scholar 

  46. J Passchier A Waarde ParticleVan P Doze PH Elsinga W Vaalburg (2000) ArticleTitleInfluence of P-glycoprotein on brain uptake of [18F]MPPF in rats Eur J Pharmacol 407 273–280 Occurrence Handle10.1016/S0014-2999(00)00752-4

    Article  Google Scholar 

  47. MS Berridge EH Cassidy AH Terris JM Vesselle (1992) ArticleTitlePreparation and in vivo binding of [11C]carazolol, a radiotracer for the β-adrenergic receptor Nucl Med Biol 19 563–569

    Google Scholar 

  48. P Doze A Waarde ParticleVan PH Elsinga AM Loenen-Weemaes Particlevan ATM Willemsen W Vaalburg (1998) ArticleTitleValidation of S-1′-[18F]fluorocarazolol for in vivo imaging and quantification of cerebral β-adrenoceptors Eur J Pharmacol 353 215–226 Occurrence Handle10.1016/S0014-2999(98)00418-X

    Article  Google Scholar 

  49. PH Elsinga MG Vos A Waarde ParticleVan et al. (1996) ArticleTitle(S,S)- and (S,R)-1′-[18F]fluorocarazolol, ligands for the visualization of pulmonary β-adrenergic receptors with PET Nucl Med Biol 23 159–167 Occurrence Handle10.1016/0969-8051(95)02049-7

    Article  Google Scholar 

  50. LB Zheng MS Berridge P Ernsberger (1994) ArticleTitleSynthesis, binding properties, and 18F labeling of fluorocarazolol, a high-affinity β-adrenergic receptor antagonist J Med Chem 37 3219–3230

    Google Scholar 

  51. A Waarde ParticleVan TJ Visser PH Elsinga et al. (1997) ArticleTitleImaging β-adrenoceptors in the human brain with (S)-1′-[18F]fluorocarazolol J Nucl Med 38 934–939

    Google Scholar 

  52. P Doze A Waarde ParticleVan PH Elsinga NH Hendrikse W Vaalburg (2000) ArticleTitleEnhanced cerebral uptake of receptor ligands by modulation of P-glycoprotein function in the blood–brain barrier Synapse 36 66–74 Occurrence Handle10.1002/(SICI)1098-2396(200004)36:1<66::AID-SYN7>3.0.CO;2-J

    Article  Google Scholar 

  53. LJ Grimm JA Blendy KJ Kellar DC Perry (1992) ArticleTitleChronic reserpine administration selectively up-regulates β1- and α1b-adrenergic receptors in rat brain: An autoradiographic study Neuroscience 47 77–86 Occurrence Handle10.1016/0306-4522(92)90122-I

    Article  Google Scholar 

  54. RB Innis FMA Correa SH Snyder (1979) ArticleTitleCarazolol, an extremely potent β-adrenergic blocker: Binding to β-receptors in brain membranes Life Sci 24 2255–2264 Occurrence Handle10.1016/0024-3205(79)90102-4

    Article  Google Scholar 

  55. PL Golden WM Pardridge (2000) ArticleTitleBrain microvascular P-glycoprotein and a revised model of multidrug resistance in brain Cell Mol Neurobiol 20 165–181 Occurrence Handle10.1023/A:1007093521681

    Article  Google Scholar 

  56. WD Klohs RW Steinkampf MJ Havlick RC Jackson (1986) ArticleTitleResistance to anthrapyrazoles and anthracyclines in multidrug-resistant P388 murine leukemia cells: Reversal by calcium blockers and calmodulin antagonists Cancer Res 46 4352–4356

    Google Scholar 

  57. NH Hendrikse EGE Vries Particlede E Eriks-Fluks et al. (1999) ArticleTitleA new in vivo method to study P-glycoprotein transport in tumors and the blood–brain barrier Cancer Res 59 2411–2416

    Google Scholar 

  58. Bart J, Willemsen ATM, Groen HJM, et al. (2003) Quantitative assessment of P-glycoprotein function in the rat blood–brain barrier by distribution volume of [11C]verapamil measured with PET. Neuroimage (in press)

  59. SK Martin AM Oduola WK Milhous (1987) ArticleTitleReversal of chloroguine resistance in Plasmodium falciparum by verapamil Science 235 899–901

    Google Scholar 

  60. C Hansch A Leo D Hoekman (1995) Exploring QSAR: Hydrophobic, electronic, and steric constants American Chemistry Society Washington, DC

    Google Scholar 

  61. DD Dishino MJ Welch MR Kilbourn ME Raichle (1983) ArticleTitleRelationship between lipophilicity and brain extraction of 11C-labeled radiopharmaceuticals J Nucl Med 24 1030–1038

    Google Scholar 

  62. P Buchwald N Bodor (1998) ArticleTitleOctanol–water partition: Searching for predictive models Curr Med Chem 5 353–380

    Google Scholar 

  63. O Jonsson P Behnam-Motlagh M Persson R Henriksson K Grankvist (1999) ArticleTitleIncrease in doxorubicin cytotoxicity by carvedilol inhibition of P-glycoprotein activity Biochem Pharmacol 58 1801–1806 Occurrence Handle10.1016/S0006-2952(99)00262-2

    Article  Google Scholar 

  64. P Doze PH Elsinga B Maas A Waarde ParticleVan T Wegman W Vaalburg (2002) ArticleTitleSynthesis and evaluation of radiolabeled antagonists for imaging of beta-adrenoceptors in the brain with PET Neurochem Int 40 145–155 Occurrence Handle10.1016/S0197-0186(01)00081-X

    Article  Google Scholar 

  65. WH Schaefer J Politowski B Hwang (1998) ArticleTitleMetabolism of carvedilol in dogs, rats, and mice Drug Metab Dispos 26 958–969

    Google Scholar 

  66. G Neugebauer P Neubert (1991) ArticleTitleMetabolism of carvedilol in man Eur J Drug Metab Pharmacokinet 16 257–260

    Google Scholar 

  67. S Neuhoff P Langguth C Dressler TB Andersson CG Regardh H Spahn-Langguth (2000) ArticleTitleAffinities at the verapamil binding site of MDR1-encoded P-glycoprotein: Drugs and analogs, stereoisomers and metabolites Int J Clin Pharmacol Ther 38 168–179

    Google Scholar 

  68. AF List KJ Kopecky CL Willman et al. (2001) ArticleTitleBenefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: A Southwest Oncology Group study Blood 98 3212–3220 Occurrence Handle10.1182/blood.V98.12.3212

    Article  Google Scholar 

  69. DJ Boote IF Dennis PR Twentyman et al. (1996) ArticleTitlePhase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer J Clin Oncol 14 610–618

    Google Scholar 

  70. EK Rowinsky L Smith YM Wang et al. (1998) ArticleTitlePhase I and pharmacokinetic study of paclitaxel in combination with biricodar, a novel agent that reverses multidrug resistance conferred by overexpression of both MDR1 and MRP J Clin Oncol 16 2964–2976 Occurrence Handle1:CAS:528:DyaK1cXmtFSls7g%3D Occurrence Handle9738565

    CAS  PubMed  Google Scholar 

  71. D Damiani M Michieli A Ermacora et al. (1998) ArticleTitleAdjuvant treatment with cyclosporin a increases the toxicity of chemotherapy for remission induction in acute non-lymphocytic leukemia Leukemia 12 1236–1240 Occurrence Handle10.1038/sj.leu.2401092

    Article  Google Scholar 

  72. MJ Newman JC Rodarte KD Benbatoul et al. (2000) ArticleTitleDiscovery and characterization of OC144-093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance Cancer Res 60 2964–2972 Occurrence Handle1:CAS:528:DC%2BD3cXjvFOlt74%3D Occurrence Handle10850444

    CAS  PubMed  Google Scholar 

  73. A Sparreboom AS Planting RC Jewell et al. (1999) ArticleTitleClinical pharmacokinetics of doxorubicin in combination with GF120918, a potent inhibitor of MDR1 P-glycoprotein Anticancer Drugs 10 719–728 Occurrence Handle1:CAS:528:DyaK1MXntlGhtrw%3D Occurrence Handle10573204

    CAS  PubMed  Google Scholar 

  74. P Mistry AJ Stewart W Dangerfield et al. (2001) ArticleTitleIn vitro and in vivo reversal of P-glycoprotein-mediated multidrug resistance by a novel potent modulator XR9576 Cancer Res 61 749–758

    Google Scholar 

  75. D Toppmeyer AD Seidman M Pollak et al. (2002) ArticleTitleSafety and efficacy of the multidrug resistance inhibitor Incel (biricodar; VX-710) in combination with paclitaxel for advanced breast cancer refractory to paclitaxel Clin Cancer Res 8 670–678

    Google Scholar 

  76. LA Mickley JS Lee Z Weng et al. (1998) ArticleTitleGenetic polymorphism in MDR-1: A tool for examining allelic expression in normal cells, unselected and drug-selected cell lines and human tumors Blood 1 1749–1756

    Google Scholar 

  77. A Siddiqui R Kerb ME Weale et al. (2003) ArticleTitleAssociation of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1 N Engl J Med 348 1442–1448 Occurrence Handle10.1056/NEJMoa021986 Occurrence Handle1:CAS:528:DC%2BD3sXivVCgs7g%3D Occurrence Handle12686700

    Article  CAS  PubMed  Google Scholar 

  78. U Brinkmann I Roots M Eichelbaum (2001) ArticleTitlePharmacogenetics of the human drug-transporter gene MDR1: Impact of polymorphisms on phamacotherapy DDT 6 835–839

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip H. Elsinga PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsinga, P.H., Hendrikse, N.H., Bart, J. et al. Positron Emission Tomography Studies on Binding of Central Nervous System Drugs and P-Glycoprotein Function in the Rodent Brain. Mol Imaging Biol 7, 37–44 (2005). https://doi.org/10.1007/s11307-005-0951-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-005-0951-x

Key words

Navigation