Skip to main content
Log in

Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to compare the time-course of contrast-enhancement in spleen and liver using Exia 160 in comparison with Fenestra LC and VC in healthy mice.

Procedures

Healthy C57bl/6 mice were used in this study. Fenestra LC and VC was administered intravenously at a dose of 0.1 ml/20 g or 0.2 ml/20 g. Exia 160 at a dose of 0.05 ml/20 g or 0.1 ml/20 g. Each animal underwent a micro-CT scan before contrast injection (baseline) and immediately after contrast injection. Additional scans were performed at 1, 2, 3, 4, 24, and 48 h after contrast administration. The mice who received Exia 160 were also scanned after 15, 30, and 45 min.

Results

The peak enhancement of Exia 160 occurred after 15 min for the spleen and after 30 min for the liver.

Conclusions

Exia 160 allows rapid spleen and liver enhancement. The high iodine content results in small injection volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wolbarst AB, Hendee WR (2006) Evolving and experimental technologies in medical imaging. Radiology 238:16–39

    Article  PubMed  Google Scholar 

  2. Badea C, Hedlund LW, Johnson GA (2004) Micro-CT with respiratory and cardiac gating. Med Phys 31(12):3324–3329

    Article  PubMed  CAS  Google Scholar 

  3. Deroose CM, De A, Loening AM, Chow PL et al (2007) Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging. J Nucl Med 48:295–303

    PubMed  CAS  Google Scholar 

  4. De Clerck NM, Meurrens K, Weiler H et al (2004) High-resolution X-ray microtomography for the detection of lung tumors in living mice. Neoplasia 6(4):374–379

    Article  PubMed  Google Scholar 

  5. Paulus MJ, Gleason SS, Kennel SJ et al (2000) High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2(1–2):62–70

    Article  PubMed  CAS  Google Scholar 

  6. Lewis JS, Achilefu S, Garbow JR et al (2002) Small animal imaging: current technology and perspectives for oncological imaging. Eur J Cancer 38:2173–2188

    Article  PubMed  Google Scholar 

  7. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  CAS  Google Scholar 

  8. Hu J, Haworth ST, Molthen RC, Dawson CA (2004) Dynamic small animal lung imaging via a postacquisition respiratory gating technique using micro-cone beam computed tomography. Acad Radiol 11:961–970

    Article  PubMed  Google Scholar 

  9. Stenström M, Olander B, Carlsson CA et al (1998) The use of microtomography to monitor morphological changes in small animals. Appl Radiat Isot 49(5/6):565–570

    Article  PubMed  Google Scholar 

  10. Cavanaugh D, Johnson E, Price RE et al (2004) In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol Imaging 3(1):55–62

    Article  PubMed  Google Scholar 

  11. Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20(8):34–39

    Article  Google Scholar 

  12. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Devl 17(5):545–580

    Article  CAS  Google Scholar 

  13. Ford NL, Graham KC, Groom AC et al (2006) Time-course characterization of the computed tomography contrast enhancement of an iodinated blood-pool contrast agent in mice using a volumetric flat-panel equipped computed tomography scanner. Invest Radiol 41:384–390

    Article  PubMed  Google Scholar 

  14. Kao C-Y, Hoffman EA, Beck KC et al (2003) Long-residence-time nano-scale liposomal iohexol for X-ray-based blood pool imaging. Acad Radiol 10:475–483

    Article  PubMed  Google Scholar 

  15. Mukundan S, Ghaghada KB, Badea CT et al (2006) A liposomal nanoscale contrast agent for preclinical CT in mice. AJR 186:300–307

    Article  PubMed  Google Scholar 

  16. Weichert JP, Longino MA, Bakan DA et al (1995) Polyiodinated triglyceride analogs as potential computed tomography imaging agents for the liver. J Med Chem 38:636–646

    Article  PubMed  CAS  Google Scholar 

  17. Weichert JP, Lee FT Jr, Chosy SG et al (2000) Combined hepato-selective and blood-pool contrast agents for the CT detection of experimental liver tumors in rabbits. Radiology 216:865–871

    PubMed  CAS  Google Scholar 

  18. Bakan DA, Weichert JP, Longino MA et al (2000) Polyiodinated triglyceride lipid emulsions for use as hepatoselective contrast agents in CT: effects of physiochemical properties on biodistribution and imaging profiles. Invest Radiol 35:158–169

    Article  PubMed  CAS  Google Scholar 

  19. Weber SM, Peterson KA, Durkee B et al (2004) Imaging of murine liver tumor using micro-CT with a hepatocyte-selective contast agent: accuracy is depentdent on adequate contrast enhancement. J Surg Research 119:41–45

    Article  CAS  Google Scholar 

  20. Weichert JP, Lee FT Jr, Longino MA et al (1998) Lipid-based blood-pool CT imaging of the liver. Acad Radiol 5(Suppl 1):S16–S19

    Article  PubMed  Google Scholar 

  21. Bakan DA, Longino MA, Weichert JP et al (1996) Physicochemical characterization of a synthetic lipid emulsion for hepato-selective delivery of lipophilic compounds: application to polyiodinated triglycerides as contrast agents for computed tomography. J Pharm Sciences 85(9):908–914

    Article  CAS  Google Scholar 

  22. Loening AM, Gambhir SS (2003) Amide: a free software tool for multimodality medical image analysis. Mol Imaging 2(3):131–137

    Article  PubMed  Google Scholar 

  23. Desser TS, Rubin DL, Muller H et al (1999) Blood pool and liver enhancement in CT with liposomal iodixanol: comparison with iohexol. Acad Radiol 6:176–183

    Article  PubMed  CAS  Google Scholar 

  24. Torchilin VP, Frank-Kamenetsky MD, Wolf GL (1999) CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad Radiol 6:61–65

    Article  PubMed  CAS  Google Scholar 

  25. Suckow CE, Stout DB (2008) MicroCT liver contrast agent enhancement over time, dose, and mouse strain. Mol Imaging Biol 10(2):114–120

    Article  PubMed  Google Scholar 

  26. Ohta S, Lai EW, Morris JC et al (2006) MicroCT for high-resolution imaging of ectopic pheochromocytoma tumors in the liver of nude mice. Int J Cancer 119:2236–2241

    Article  PubMed  CAS  Google Scholar 

  27. Almajdub M, Nejjari M, Poncet G et al (2007) In-vivo high-resolution X-ray microtomography for liver and spleen tumor assessment in mice. Contrast Media Mol Imaging 2:88–93

    Article  PubMed  CAS  Google Scholar 

  28. Walters EB, Panda K, Bankson JA et al (2004) Improved method of in vivo respiratory-gated micro-CT imaging. Phys Med Biol 49:4163–4172

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inneke Willekens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willekens, I., Lahoutte, T., Buls, N. et al. Time-Course of Contrast Enhancement in Spleen and Liver with Exia 160, Fenestra LC, and VC. Mol Imaging Biol 11, 128–135 (2009). https://doi.org/10.1007/s11307-008-0186-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0186-8

Key words

Navigation