Skip to main content

Advertisement

Log in

Pancreatic Beta Cell Mass PET Imaging and Quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in Rodent Models of Diabetes

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to compare the utility of two positron emission tomography (PET) imaging ligands ((+)-[11C]dihydrotetrabenazine ([11C]DTBZ) and the fluoropropyl analog ([18F]FP-(+)-DTBZ)) that target islet β-cell vesicular monoamine transporter type II to measure pancreatic β-cell mass (BCM).

Procedures

[11C]DTBZ or [18F]FP-(+)-DTBZ was injected, and serial PET images were acquired in rat models of diabetes (streptozotocin-treated and Zucker diabetic fatty) and β-cell compensation (Zucker fatty). Radiotracer standardized uptake values (SUV) were correlated to pancreas insulin content measured biochemically and histomorphometrically.

Results

On a group level, a positive correlation of [11C]DTBZ pancreatic SUV with pancreas insulin content and BCM was observed. In the STZ diabetic model, both [18F]FP-(+)-DTBZ and [11C]DTBZ correlated positively with BCM, although only ∼25% of uptake could be attributed to β-cell uptake. [18F]FP-(+)-DTBZ displacement studies indicate that there is a substantial fraction of specific binding that is not to pancreatic islet β cells.

Conclusions

PET imaging with [18F]FP-(+)-DTBZ provides a noninvasive means to quantify insulin-positive BCM and may prove valuable as a diagnostic tool in assessing treatments to maintain or restore BCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Finegood DT, McArthur MD, Kojwang D et al (2001) Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 50:1021–1029

    Article  PubMed  CAS  Google Scholar 

  2. Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc 1:429–435

    Article  PubMed  CAS  Google Scholar 

  3. Saudek F, Brogren CH, Manohar S (2008) Imaging the beta-cell mass: why and how. Rev Diab Stud RDS 5:6–12

    Article  Google Scholar 

  4. Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A (2008) VMAT2 gene expression and function as it applies to imaging beta-cell mass. J Molecul Med 86:5–16

    Article  CAS  Google Scholar 

  5. Robertson RP (2007) Estimation of beta-cell mass by metabolic tests: necessary, but how sufficient? Diabetes 56:2420–2424

    Article  PubMed  CAS  Google Scholar 

  6. Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A (2006) In vivo imaging of islet transplantation. Nat Med 12:144–148

    Article  PubMed  CAS  Google Scholar 

  7. Antkowiak PF, Tersey SA, Carter JD, Vandsburger MH, Nadler JL, Epstein FH, Mirmira RG (2009) Noninvasive assessment of pancreatic beta-cell function in vivo with manganese-enhanced magnetic resonance imaging. Am J Physiol Endocrin Metab 296:E573–E578

    Article  CAS  Google Scholar 

  8. Schmitz A, Shiue CY, Feng Q et al (2004) Synthesis and evaluation of fluorine-18 labeled glyburide analogs as beta-cell imaging agents. Nucl Med Biol 31:483–491

    Article  PubMed  CAS  Google Scholar 

  9. Schneider S, Feilen PJ, Schreckenberger M et al (2005) In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans. Exp Clin Endocrinol Diab 113:388–395

    Article  CAS  Google Scholar 

  10. Wangler B, Beck C, Shiue CY et al (2004) Synthesis and in vitro evaluation of (S)-2-([I11C]methoxy)-4-[3-methyl-1-(2-piperidine-1-yl-phenyl)-butyl-carbamoyl]-benzoic acid ([11C]methoxy-repaglinide): a potential beta-cell imaging agent. Bioorg Med Chem Lett 14:5205–5209

    Article  PubMed  Google Scholar 

  11. Wangler B, Schneider S, Thews O et al (2004) Synthesis and evaluation of (S)-2-(2-[18F]fluoroethoxy)-4-([3-methyl-1-(2-piperidin-1-yl-phenyl)-butyl-carbamoyl]-methyl)-benzoic acid ([18F]repaglinide): a promising radioligand for quantification of pancreatic beta-cell mass with positron emission tomography (PET). Nucl Med Biol 31:639–647

    Article  PubMed  CAS  Google Scholar 

  12. Kung HF, Lieberman BP, Zhuang Z-P et al (2008) In vivo imaging of vesicular monoamine transporter 2 in pancreas using an 18F epoxide derivative of tetrabenazine. Nucl Med Biol 35:825–837

    Article  PubMed  CAS  Google Scholar 

  13. Kung M-P, Hou C, Lieberman BP et al (2008) In vivo imaging of β-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49:1171–1176

    Article  PubMed  CAS  Google Scholar 

  14. Harris PE, Ferrara C, Barba P, Polito T, Freeby M, Maffei A (2008) VMAT2 gene expression and function as it applies to imaging beta-cell mass. J Molec Med 86:5–16

    Article  PubMed  CAS  Google Scholar 

  15. Simpson NR, Souza F, Witkowski P et al (2006) Visualizing pancreatic β-cell mass with [11C]DTBZ. Nuc Med Biol 33:855–864

    Article  CAS  Google Scholar 

  16. Souza F, Simpson N, Raffo A et al (2006) Longitudinal noninvasive PET-based β-cell mass estimates in a spontaneous diabetes rat model. J Clin Invest 116:1506–1513

    Article  PubMed  CAS  Google Scholar 

  17. Goland R, Freeby M, Parsey R et al (2009) 11C-Dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J Nucl Med 50:382–389

    Article  PubMed  CAS  Google Scholar 

  18. Weihe E, Eiden LE (2000) Chemical neuroanatomy of the vesicular amine transporters. FASEB J 14:2435–2449

    Article  PubMed  CAS  Google Scholar 

  19. Anlauf MR, Eissele MK, Schafer LE et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–1040

    Article  PubMed  CAS  Google Scholar 

  20. Maffei AZ, Liu P, Witkowski F et al (2004) Identification of tissue-restricted transcripts in human islets. Endocrin 145:4513–4521

    Article  CAS  Google Scholar 

  21. Weihe E, Schafer MK, Erickson JD, Eiden LE (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Molec Neurosci MN 5:149–164

    Article  CAS  Google Scholar 

  22. Kung MP, Hou C, Goswami R, Ponde DE, Kilbourn MR, Kung HF (2007) Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters. Nucl Med Biol 34:239–246

    Article  PubMed  CAS  Google Scholar 

  23. Kilbourn MR, Hockleya B, Leea L et al (2007) Pharmacokinetics of [18F]fluoroalkyl derivatives of dihydrotetrabenazine in rat and monkey brain. Nuc Med Biol 34:233–237

    Article  CAS  Google Scholar 

  24. Larsen P, Ulin J, Dahlstrom K, Jensen M (1997) Synthesis of [11C]iodomethane by iodination of [11C]methane. Appl Radiat Isot 48:153–157

    Article  CAS  Google Scholar 

  25. Jewett D (1992) A simple synthesis of [11C]methyl triflate. Appl Radiat Isot 43:1383–1385

    Article  CAS  Google Scholar 

  26. Liu YQ, Jetton TL, Leahy JL (2002) β-Cell adaptation to insulin resistance. J Biol Chem 277:39163–39168

    Article  PubMed  CAS  Google Scholar 

  27. Pick A, Kubstrub CJ, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the Zucker diabetic fatty rat. Diabetes 47:358–364

    Article  PubMed  CAS  Google Scholar 

  28. Carson RE, Barker WC, Liow JS, Johnson CA (2003) Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT. IEEE Nucl Sci Symp Conf Rec 5:3281–3285

    Google Scholar 

  29. Rasband WS. Image J. U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997–2009

  30. Brenna O, Qvigstad G, Brenna E, Waldum HL (2003) Cytotoxicity of streptozotocin on neuroendocrine cells of the pancreas and the gut. Dig Dis Sci 48:906–910

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi T, Kantoh M, Kusunoki M, Yamamura T, Utsunomiya J (1989) Different innervation mechanisms between the lesser and greater curvature of guinea pig antrum. Dig Dis Sci 34:220–224

    Google Scholar 

  32. Saisho Y, Harris PE, Butler AE, Galasso R, Gurlo T, Rizza RA, Butler PC (2008) Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J Mol Hist 39:543–551

    Article  CAS  Google Scholar 

  33. Ichise M, Liow JS et al (2003) Linearized reference tissue parametricimaging methods: application to [11C]DASB positron emission tomographystudies of the serotonin transporter in human brain. J Cereb Blood FlowMetab 23:1096–1112

    Article  Google Scholar 

  34. Bray GA (1977) The Zucker-fatty rat: a review. Fed Proc 36:148–153

    PubMed  CAS  Google Scholar 

  35. Ohneda M, Inman LR, Unger RH (1995) Caloric restriction in obese pre-diabetic rats prevents beta-cell depletion, loss of beta-cell GLUT 2 and glucose incompetence. Diabetologia 38:173–179

    Article  PubMed  CAS  Google Scholar 

  36. Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75

    PubMed  CAS  Google Scholar 

  37. Janssen SW, Hermus AR, Lange WP (2001) Progressive histopathological changes in pancreatic islets of Zucker diabetic fatty rats. Exp Clinic Endoc Diab 109:273–282

    Article  CAS  Google Scholar 

  38. Mei Q, Mundinger TO, Lernmark A, Taborsky GJ Jr (2002) Early, selective, and marked loss of sympathetic nerves from the islets of BioBreeder diabetic rats. Diabetes 51:2997–3002

    Article  PubMed  CAS  Google Scholar 

  39. Raffo A, Hancock K, Polito T et al (2008) Role of vesicular monoamine transporter type 2 in rodent insulin secretion and glucose metabolism revealed by its specific antagonist tetrabenazine. J Endocrin 198:41–49

    Article  CAS  Google Scholar 

  40. Lenzen S (2008) The mechanism of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226

    Article  PubMed  CAS  Google Scholar 

  41. Sundler F, Hakason R, Lundquist I, Larsson L-I (1977) Effect of alloxan on pancreatic polypeptide (PP) cells. Cell Tissue Res 178:307–312

    PubMed  CAS  Google Scholar 

  42. Rahier J, Wallon J, Loozen A, Lefevre W, Gepts W, Hao J (1983) The pancreatic polypeptide cells in the human pancreas: the effects of age and diabetes. J Clin Endocrinol Metab 56:441–444

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the excellent work of the staff of the Yale PET Center and Tim Mulnix, PhD for the rat holder and technical assistance critical to the success of these studies. These studies were supported by the Yale-Pfizer Bioimaging Alliance and the Juvenile Diabetes Research Foundation (1 37-2009-29). This publication was also made possible by CTSA Grant Number UL1 RR024139 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH roadmap for Medical Research. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH.

Conflicts of Interest/Disclosures

Walter C. Soeller owns shares in Pfizer, Inc. and Judith L. Treadway is an employee and shareholder of Pfizer, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Cline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhal, T., Ding, YS., Weinzimmer, D. et al. Pancreatic Beta Cell Mass PET Imaging and Quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in Rodent Models of Diabetes. Mol Imaging Biol 13, 973–984 (2011). https://doi.org/10.1007/s11307-010-0406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0406-x

Key words

Navigation