Skip to main content
Log in

Tumor Dosimetry Using [124I]m-iodobenzylguanidine MicroPET/CT for [131I]m-iodobenzylguanidine Treatment of Neuroblastoma in a Murine Xenograft Model

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

[124I]m-iodobenzylguanidine (124I-mIBG) provides a quantitative tool for pretherapy tumor imaging and dosimetry when performed before [131I]m-iodobenzylguanidine (131I-mIBG) targeted radionuclide therapy of neuroblastoma. 124I (T 1/2 = 4.2 days) has a comparable half-life to that of 131I (T 1/2 = 8.02 days) and can be imaged by positron emission tomography (PET) for accurate quantification of the radiotracer distribution. We estimated expected radiation dose in tumors from 131I-mIBG therapy using 124I-mIBG microPET/CT imaging data in a murine xenograft model of neuroblastoma transduced to express high levels of the human norepinephrine transporter (hNET).

Procedures

In order to enhance mIBG uptake for in vivo imaging and therapy, NB 1691-luciferase (NB1691) human neuroblastoma cells were engineered to express high levels of hNET protein by lentiviral transduction (NB1691-hNET). Both NB1691 and NB1691-hNET cells were implanted subcutaneously and into renal capsules in athymic mice. 124I-mIBG (4.2–6.5 MBq) was administered intravenously for microPET/CT imaging at 5 time points over 95 h (0.5, 3–5, 24, 48, and 93–95 h median time points). In vivo biodistribution data in normal organs, tumors, and whole-body were collected from reconstructed PET images corrected for photon attenuation using the CT-based attenuation map. Organ and tumor dosimetry were determined for 124I-mIBG. Dose estimates for 131I-mIBG were made, assuming the same in vivo biodistribution as 124I-mIBG.

Results

All NB1691-hNET tumors had significant uptake and retention of 124I-mIBG, whereas unmodified NB1691 tumors did not demonstrate quantifiable mIBG uptake in vivo, despite in vitro uptake. 124I-mIBG with microPET/CT provided an accurate three-dimensional tool for estimating the radiation dose that would be delivered with 131I-mIBG therapy. For example, in our model system, we estimated that the administration of 131I-mIBG in the range of 52.8–206 MBq would deliver 20 Gy to tumors.

Conclusions

The overexpression of hNET was found to be critical for 124I-mIBG uptake and retention in vivo. The quantitative 124I-mIBG PET/CT is a promising new tool to predict tumor radiation doses with 131I-mIBG therapy of neuroblastoma. This methodology may be applied to tumor dosimetry of 131I-mIBG therapy in human subjects using 124I-mIBG pretherapy PET/CT data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DuBois SG, Matthay KK (2008) Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl Med Biol 35(Suppl 1):S35–S48

    Article  PubMed  CAS  Google Scholar 

  2. Mueller S, Matthay KK (2009) Neuroblastoma: biology and staging. Curr Oncol Rep 11:431–438

    Article  PubMed  Google Scholar 

  3. Matthay KK, Villablanca JG, Seeger RC et al (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med 341:1165–1173

    Article  PubMed  CAS  Google Scholar 

  4. Short JH, Darby TD (1967) Sympathetic nervous system blocking agents. 3. Derivatives of benzylguanidine. J Med Chem 10:833–840

    Article  PubMed  CAS  Google Scholar 

  5. Wieland DM, Brown LE, Tobes MC, Rogers WL, Marsh DD, Mangner TJ, Swanson DP, Beierwaltes WH (1981) Imaging the primate adrenal medulla with [123I] and [131I] meta-iodobenzylguanidine: concise communication. J Nucl Med 22:358–364

    PubMed  CAS  Google Scholar 

  6. Taggart D, Dubois S, Matthay KK (2008) Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. Q J Nucl Med Mol Imaging 52:403–418

    PubMed  CAS  Google Scholar 

  7. Taggart DR, Han MM, Quach A et al (2009) Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol 27:5343–5349

    Article  PubMed  CAS  Google Scholar 

  8. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL (2009) 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 50:1237–1243

    Article  PubMed  Google Scholar 

  9. Treuner J, Feine U, Niethammer D et al (1984) Scintigraphic imaging of neuroblastoma with [131-I]iodobenzylguanidine. Lancet 1:333–334

    Article  PubMed  CAS  Google Scholar 

  10. Matthay KK, Shulkin B, Ladenstein R, Michon J, Giammarile F, Lewington V, Pearson AD, Cohn SL (2010) Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer 102:1319–1326

    Article  PubMed  CAS  Google Scholar 

  11. Matthay KK, Yanik G, Messina J et al (2007) Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol 25:1054–1060

    Article  PubMed  CAS  Google Scholar 

  12. Matthay KK, Quach A, Huberty J et al (2009) Iodine-131-metaiodobenzylguanidine double infusion with autologous stem-cell rescue for neuroblastoma: a new approaches to neuroblastoma therapy phase I study. J Clin Oncol 27:1020–1025

    Article  PubMed  CAS  Google Scholar 

  13. Matthay KK, Tan JC, Villablanca JG et al (2006) Phase I dose escalation of iodine-131-metaiodobenzylguanidine with myeloablative chemotherapy and autologous stem-cell transplantation in refractory neuroblastoma: a new approaches to Neuroblastoma Therapy Consortium Study. J Clin Oncol 24:500–506

    Article  PubMed  CAS  Google Scholar 

  14. Gaze MN, Chang YC, Flux GD, Mairs RJ, Saran FH, Meller ST (2005) Feasibility of dosimetry-based high-dose 131I-meta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma. Cancer Biother Radiopharm 20:195–199

    Article  PubMed  CAS  Google Scholar 

  15. Carlin S, Mairs RJ, McCluskey AG et al (2003) Development of a real-time polymerase chain reaction assay for prediction of the uptake of meta-[(131)I]iodobenzylguanidine by neuroblastoma tumors. Clin Cancer Res 9:3338–3344

    PubMed  CAS  Google Scholar 

  16. More SS, Itsara M, Yang X et al (2011) Vorinostat increases expression of functional norepinephrine transporter in neuroblastoma in vitro and in vivo model systems. Clin Cancer Res 17:2339–2349

    Article  PubMed  CAS  Google Scholar 

  17. McCluskey AG, Boyd M, Ross SC, Cosimo E, Clark AM, Angerson WJ, Gaze MN, Mairs RJ (2005) [131I]meta-iodobenzylguanidine and topotecan combination treatment of tumors expressing the noradrenaline transporter. Clin Cancer Res 11:7929–7937

    Article  PubMed  CAS  Google Scholar 

  18. Moroz MA, Serganova I, Zanzonico P et al (2007) Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med 48:827–836

    Article  PubMed  CAS  Google Scholar 

  19. Autret D, Bitar A, Ferrer L, Lisbona A, Bardies M (2005) Monte Carlo modeling of gamma cameras for I-131 imaging in targeted radiotherapy. Cancer Biother Radiopharm 20:77–84

    Article  PubMed  CAS  Google Scholar 

  20. Matthay KK, Panina C, Huberty J et al (2001) Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with (131)I-MIBG. J Nucl Med 42:1713–1721

    PubMed  CAS  Google Scholar 

  21. Buckley SE, Saran FH, Gaze MN, Chittenden S, Partridge M, Lancaster D, Pearson A, Flux GD (2007) Dosimetry for fractionated (131)I-mIBG therapies in patients with primary resistant high-risk neuroblastoma: preliminary results. Cancer Biother Radiopharm 22:105–112

    Article  PubMed  CAS  Google Scholar 

  22. Lee CL, Wahnishe H, Sayre GA et al (2010) Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys 37:4861–4867

    Article  PubMed  Google Scholar 

  23. Gregory RA, Hooker CA, Partridge M, Flux GD (2009) Optimization and assessment of quantitative 124I imaging on a Philips Gemini dual GS PET/CT system. Eur J Nucl Med Mol Imaging 36:1037–1048

    Article  PubMed  Google Scholar 

  24. Hunter DH, Zhu X (1999) Polymer-supported radiopharmaceuticals: [131I]MIBG and [123I]MIBG. J Label Compd Radiopharm 42:653–661

    Article  CAS  Google Scholar 

  25. Thompson J, Zamboni WC, Cheshire PJ, Richmond L, Luo X, Houghton JA, Stewart CF, Houghton PJ (1997) Efficacy of oral irinotecan against neuroblastoma xenografts. Anti Cancer Drugs 8:313–322

    Article  PubMed  CAS  Google Scholar 

  26. Dickson PV, Hamner B, Ng CY, Hall MM, Zhou J, Hargrove PW, McCarville MB, Davidoff AM (2007) In vivo bioluminescence imaging for early detection and monitoring of disease progression in a murine model of neuroblastoma. J Pediatr Surg 42:1172–1179

    Article  PubMed  Google Scholar 

  27. Iavarone A, Lasorella A, Servidei T, Riccardi R, Troncone L, Mastrangelo R (1991) Biology of metaiodobenzylguanidine interactions with human neuroblastoma cells. J Nucl Biol Med 35:186–190

    PubMed  CAS  Google Scholar 

  28. Yu AR, Kim JS, Kim KM et al. (2009) Optimal PET acquisition setting of 1–124 with Siemens Inveon PET: comparative simulation study with F-l 8 and microPET R4. 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) 2666–2668

  29. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  PubMed  Google Scholar 

  30. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    PubMed  Google Scholar 

  31. Waxler SH, Enger M (1954) Organ weights and obesity in mice. J Nutr 54:209–214

    PubMed  CAS  Google Scholar 

  32. Barrett JA, Joyal JL, Hillier SM et al (2010) Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution. Cancer Biother Radiopharm 25:299–308

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the V Foundation (K.K.M.), National Cancer Institute under grant K25 CA114254 (Y.S.) and R01 CA154561 (Y.S.), BAERI of KRF funded by MEST grant 2011-0006368 (C.L.L.), National Cancer Institute grant R01 CA102321 (W.A.W.), P01 CA081403 (W.A.W. and K.K.M.), Dougherty Foundation (K.K.M.), and Alex Lemonade Foundation (K.K.M. and W.A.W.).

Conflict of Interest Disclosure

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngho Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, Y., Gustafson, W.C., Dannoon, S.F. et al. Tumor Dosimetry Using [124I]m-iodobenzylguanidine MicroPET/CT for [131I]m-iodobenzylguanidine Treatment of Neuroblastoma in a Murine Xenograft Model. Mol Imaging Biol 14, 735–742 (2012). https://doi.org/10.1007/s11307-012-0552-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-012-0552-4

Key words

Navigation