Skip to main content
Log in

Effects of Chelator Modifications on 68Ga-Labeled [Tyr3]Octreotide Conjugates

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Somatostatin receptors (SSTR) have been reported as promising targets for imaging agents for cancer. Recently, 68Ga-DOTATOC-based PET imaging has been used successfully for diagnosis and management of SSTR-expressing tumors. The purpose of this study was to evaluate the influence of chelator modifications and charge on 68Ga-labeled peptide conjugates.

Procedures

We have synthesized a series of [Tyr3]octreotide conjugates that consisted of different NOTA-based chelators with two to five carboxylate moieties, and compared our results with 68Ga-DOTATOC in both in vitro and in vivo studies.

Results

With the exception of 68Ga-1 (three carboxylates), the increased number of carboxylates on the NOTA-based chelators resulted in a reduced binding affinity and internalization. Additionally, the tumor uptake for 68Ga-2 (four carboxylates) and 68Ga-3 (five carboxylates) was reduced compared to that of 68Ga-DOTATOC (three carboxylates) and 68Ga-NO2ATOC (two carboxylates) and 68Ga-1 (three carboxylates) at 2 h p.i. suggesting the presence of an optimal charge for this compound.

Conclusions

Chelator modifications can lead to the altered pharmacokinetics. These results may impact further design considerations for peptide-based imaging agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brazeau P, Vale W, Burgus R et al (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79

    Article  PubMed  CAS  Google Scholar 

  2. Reichlin S (1983) Somatostatin. N Engl J Med 309:1495–1501

    Article  PubMed  CAS  Google Scholar 

  3. Wang HL, Bogen C, Reisine T, Dichter M (1989) Somatostatin-14 and somatostatin-28 induce opposite effects on potassium currents in rat neocortical neurons. Proc Natl Acad Sci U S A 86:9616–9620

    Article  PubMed  CAS  Google Scholar 

  4. Bal CS, Gupta SK, Zaknun JJ (2010) Radiolabeled somatostatin analogs for radionuclide imaging and therapy in patients with gastroenteropancreatic neuroendocrine tumors. Trop Gastroenterol 31:87–95

    PubMed  CAS  Google Scholar 

  5. Pawlikowski M, Melen-Mucha G (2004) Somatostatin analogs—from new molecules to new applications. Curr Opin Pharmacol 4:608–613

    Article  PubMed  CAS  Google Scholar 

  6. Pool SE, Krenning EP, Koning GA et al (2010) Preclinical and clinical studies of peptide receptor radionuclide therapy. Semin Nucl Med 40:209–218

    Article  PubMed  Google Scholar 

  7. Breeman WA, de Jong M, Kwekkeboom DJ et al (2001) Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur J Nucl Med 28:1421–1429

    Article  PubMed  CAS  Google Scholar 

  8. Maecke HR, Hofmann M, Haberkorn U (2005) (68)Ga-labeled peptides in tumor imaging. J Nucl Med 46(Suppl 1):172S–178S

    PubMed  CAS  Google Scholar 

  9. Kwekkeboom DJ, Mueller-Brand J, Paganelli G et al (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 46(Suppl 1):62S–66S

    PubMed  CAS  Google Scholar 

  10. Kwekkeboom DJ, Bakker WH, Kooij PP et al (2001) [177Lu-DOTAOTyr3]octreotate: comparison with [111In-DTPAo]octreotide in patients. Eur J Nucl Med 28:1319–1325

    Article  PubMed  CAS  Google Scholar 

  11. Ruf J, Heuck F, Schiefer J et al (2010) Impact of multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology 91:101–109

    Article  PubMed  CAS  Google Scholar 

  12. Putzer D, Gabriel M, Henninger B et al (2009) Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 50:1214–1221

    Article  PubMed  Google Scholar 

  13. Wadas TJ, Wong EH, Weisman GR, Anderson CJ (2010) Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 110:2858–2902

    Article  PubMed  CAS  Google Scholar 

  14. Eisenwiener KP, Prata MI, Buschmann I et al (2002) NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 13:530–541

    Article  PubMed  CAS  Google Scholar 

  15. Garcia Garayoa E, Schweinsberg C, Maes V et al (2008) Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. Bioconjug Chem 19:2409–2416

    Article  PubMed  CAS  Google Scholar 

  16. ten Kate CI, Fischman AJ, Rubin RH et al (1990) Effect of isoelectric point on biodistribution and inflammation: imaging with indium-111-labelled IgG. Eur J Nucl Med 17:305–309

    Article  PubMed  Google Scholar 

  17. Khaw BA, Klibanov A, O’Donnell SM et al (1991) Gamma imaging with negatively charge-modified monoclonal antibody: modification with synthetic polymers. J Nucl Med 32:1742–1751

    PubMed  CAS  Google Scholar 

  18. Anderson CJ, Pajeau TS, Edwards WB, Sherman EL, Rogers BE, Welch MJ (1995) In vitro and in vivo evaluation of copper-64-octreotide conjugates. J Nucl Med 36:2315–2325

    PubMed  CAS  Google Scholar 

  19. Sun X, Singh AN (2011) Multivalent bifunctional chelator scaffolds for gallium-68 based positron emission tomography imaging probe design: signal amplification via multivalency. Bioconjug Chem 22(8):1650–62

    Google Scholar 

  20. Eisenwiener K-P, Prata MIM, Buschmann I et al (2002) NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 13:530–541

    Article  PubMed  CAS  Google Scholar 

  21. Lin M, Ranganathan D, Mori T et al (2012) Long-term evaluation of TiO(2)-based (68)Ge/(68)Ga generators and optimized automation of [(68)Ga]DOTATOC radiosynthesis. Appl Rad Isot 70:2539–2544

    Article  CAS  Google Scholar 

  22. Liu Q, Cescato R, Dewi DA, Rivier J, Reubi JC, Schonbrunn A (2005) Receptor signaling and endocytosis are differentially regulated by somatostatin analogs. Mol Pharmacol 68:90–101

    PubMed  CAS  Google Scholar 

  23. Henze M, Schuhmacher J, Hipp P et al (2001) PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med 42:1053–1056

    PubMed  CAS  Google Scholar 

  24. Hofman MS, Kong G, Neels OC, Eu P, Hong E, Hicks RJ (2012) High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours. J Med imaging Radiat Oncol 56:40–47

    Article  PubMed  Google Scholar 

  25. Naswa N, Karunanithi S, Soundararajan R et al (2012) Metastatic neuroendocrine carcinoma presenting as a "Superscan" on 68Ga-DOTANOC somatostatin receptor PET/CT. Clin Nucl Med 37:892–894

    Article  PubMed  Google Scholar 

  26. Naji M, AL-N A (2012) (6)(8)Ga-labelled peptides in the management of neuroectodermal tumours. Eur J Nucl Med Mol Imaging 39(Suppl 1):S61–S67

    Article  PubMed  Google Scholar 

  27. Ambrosini V, Campana D, Tomassetti P, Fanti S (2012) (6)(8)Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging 39(Suppl 1):S52–S60

    Article  PubMed  Google Scholar 

  28. Wagner S, Breyholz HJ, Holtke C et al (2009) A new 18F-labelled derivative of the MMP inhibitor CGS 27023A for PET: radiosynthesis and initial small-animal PET studies. Appl Radiat Isot 67:606–610

    Article  PubMed  CAS  Google Scholar 

  29. Dawson RMC, Elliott DC, Elliott WH (1989) Data for Biochemical Research. 3rd ed.: Clarendon, New York

  30. Sprague JE, Li WP, Liang K, Achilefu S, Anderson CJ (2006) In vitro and in vivo investigation of matrix metalloproteinase expression in metastatic tumor models. Nucl Med Biol 33:227–237

    Article  PubMed  CAS  Google Scholar 

  31. Decristoforo C, Melendez-Alafort L, Sosabowski JK, Mather SJ (2000) 99mTc-HYNIC-[Tyr3]-octreotide for imaging somatostatin-receptor-positive tumors: preclinical evaluation and comparison with 111In-octreotide. J Nucl Med 41:1114–1119

    PubMed  CAS  Google Scholar 

  32. Verwijnen SM, Sillevis Smith PA, Hoeben RC et al (2004) Molecular imaging and treatment of malignant gliomas following adenoviral transfer of the herpes simplex virus-thymidine kinase gene and the somatostatin receptor subtype 2 gene. Cancer Biother Radiopharm 19:111–120

    Article  PubMed  CAS  Google Scholar 

  33. Silbernagl S (1988) The renal handling of amino acids and oligopeptides. Physiol Rev 68:911–1007

    PubMed  CAS  Google Scholar 

  34. Christensen EI, Gburek J (2004) Protein reabsorption in renal proximal tubule-function and dysfunction in kidney pathophysiology. Pediatr Nephrol (Berlin, Germany) 19:714–721

    Article  Google Scholar 

  35. Vegt E, Eek A, Oyen WJ, de Jong M, Gotthardt M, Boerman OC (2010) Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides. Eur J Nucl Med Mol Imaging 37(2)226–34

    Google Scholar 

  36. Vegt E, van Eerd JE, Eek A et al (2008) Reducing renal uptake of radiolabeled peptides using albumin fragments. J Nucl Med 49:1506–1511

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors were saddened by the loss of Dr. Michael J. Welch on May 6, 2012. Nicole Fettig, Margaret Morris, Amanda Roth, and Lori Strong are thanked for performing the biodistribution studies. This work was supported by DOE Integrated Research Training Program of Excellence in Radiochemistry (DE-SC0002032).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne E. Lapi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, M., Welch, M.J. & Lapi, S.E. Effects of Chelator Modifications on 68Ga-Labeled [Tyr3]Octreotide Conjugates. Mol Imaging Biol 15, 606–613 (2013). https://doi.org/10.1007/s11307-013-0627-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0627-x

Key words

Navigation