Skip to main content

Advertisement

Log in

Assessment of the Novel Estrogen Receptor PET Tracer 4-Fluoro-11β-methoxy-16α-[18F]fluoroestradiol (4FMFES) by PET Imaging in a Breast Cancer Murine Model

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare the in vivo stability, uptake, and positron emission tomography (PET) imaging performance of a novel estrogen receptor PET tracer, 4-fluoro-11β-methoxy-16α-[18F]fluoroestradiol (4FMFES), with 16α-[18F]fluoroestradiol (FES).

Procedures

MC7-L1 and MC4-L2 (ER+) cell lines and their ERα-knockdown variants (ERαKD) were implanted subcutaneously in Balb/c mice. After 21 days, mice were imaged using either FES or 4FMFES. One hour post-injection, static images were acquired for 30 min and the tumor %ID/g uptake values were derived. Biodistribution data were also obtained 1 h following the injection of either FES or 4FMFES. Blood samples were taken at different times and analyzed on thin-layer chromatography to quantify the presence of radiometabolites for each radiotracer. To assess specific targeting to the estrogen receptors, mice bearing only ER+ tumors were treated with the competitive ER inhibitor fulvestrant 48 h prior to imaging with 4FMFES.

Results

Metabolic stability was found to be similar for both tracers in mice. Both FES and 4FMFES differentiated ER+ tumors from ERαKD tumors in biodistribution and PET imaging studies. 4FMFES achieved a significantly higher %ID/g uptake in ER+ tumors and MC4-L2 ERαKD tumors than FES in the PET imaging studies. Also, tumor-to-background ratio was higher in ER+ tumors using 4FMFES compared to FES. Dissection data showed a significantly higher %ID/g in all tested cell lines and ER-rich tissues using 4FMFES versus FES. Fulvestrant-treated mice had either low or undetectable tumor uptake.

Conclusion

In a tumor-bearing mouse model, 4FMFES achieves better specific tumor uptake and better contrast than FES, making it a promising candidate for ER imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aliaga A, Rousseau JA, Ouellet R et al (2004) Breast cancer models to study the expression of estrogen receptors with small animal PET imaging. Nucl Med Biol 31:761–770

    Article  PubMed  CAS  Google Scholar 

  2. Mintun MA, Welch MJ, Siegel BA et al (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169:45–48

    PubMed  CAS  Google Scholar 

  3. Dehdashti F, Mortimer JE, Siegel BA et al (1995) Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. J Nucl Med 36(10):1766–1774

    PubMed  CAS  Google Scholar 

  4. Mortimer JE, Dehdashti F, Siegel BA et al (1996) Positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose and 16α-[18F]fluoro-17β-estradiol in breast cancer: correlation with estrogen receptor status and response to systemic therapy. Clin Can Res 2:933–939

    CAS  Google Scholar 

  5. Kumar P, Mercer J, Doerkson C et al (2007) Clinical production, stability studies and PET imaging with 16-alpha-[18F]fluoroestradiol ([18F]FES) in ER positive breast cancer patients. J Pharm Pharm Sci 10(2):256s–265s

    PubMed  CAS  Google Scholar 

  6. Peterson LM, Mankoff DA, Lawton T et al (2008) Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 49:367–374

    Article  PubMed  Google Scholar 

  7. Linden HM, Kurland BF, Peterson LM et al (2011) Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and fulvestrant in patients with metastatic breast cancer. Clin Cancer Res 17:4799–4805

    Article  PubMed  CAS  Google Scholar 

  8. Tsujikawa T, Yoshida Y, Kiyono Y et al (2011) Functional oestrogen receptor α imaging in endometrial carcinoma using 16α-[18F]fluoro-17β-oestradiol PET. Eur J Nucl Med Mol Imaging 38:37–45

    Article  PubMed  CAS  Google Scholar 

  9. Tsujikawa T, Yoshida Y, Kudo T et al (2009) Functional images reflect aggressiveness of endometrial carcinoma: estrogen receptor expression combined with 18F-FDG PET. J Nucl Med 50:1598–1604

    Article  PubMed  CAS  Google Scholar 

  10. Mankoff DA, Tewson TJ, Eary JF (1997) Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-fluorestradiol (FES). Nucl Med Biol 24:341–348

    Article  PubMed  CAS  Google Scholar 

  11. Katzenellenbogen JA (2011) The 2010 Philip S. Portoghese Medicinal Chemistry Lectureship: addressing the “core issue” in the design of estrogen receptor ligands. J Med Chem 54(15):5271–5282

    Article  PubMed  CAS  Google Scholar 

  12. Pomper MG, VanBrocklin H, Thieme AM et al (1990) 11-beta-Methoxy-, 11-beta-ethyl- and 17-alpha-ethynyl-substituted 16-alpha-fluoroestradiols: receptor-based imaging agents with enhanced uptake efficiency and selectivity. J Med Chem 33(12):3143–3155

    Article  PubMed  CAS  Google Scholar 

  13. Ali H, Rousseau J, van Lier JE (1993) Synthesis of A-ring fluorinated derivatives of (17α,20E/Z) [125I]iodovinylestradiols: effect on receptor binding and receptor-mediated target tissue uptake. J Med Chem 36:3061–3072

    Article  PubMed  CAS  Google Scholar 

  14. Ali H, Rousseau J, Gantchev TG, van Lier JE (1993) 2- and 4-fluorinated 16α-[125I]iodoestradiol derivatives: synthesis and effect on estrogen receptor binding and receptor-mediated target tissue uptake. J Med Chem 36:4255–4263

    Google Scholar 

  15. Seimbille Y, Ali H, van Lier JE (2002) Synthesis of 2,16α- and 4,16α-difluoroestradiols and their 11β-methoxy derivatives as potential estrogen receptor-binding radiopharmaceuticals. J Chem Soc Perkin Trans 1(5):657–663

    Article  Google Scholar 

  16. Seimbille Y, Rousseau J, Bénard F et al (2002) 18F-labeled difluoroestradiols: preparation and preclinical evaluation as estrogen receptor-binding radiopharmaceuticals. Steroids 67:765–775

    Article  PubMed  CAS  Google Scholar 

  17. Bénard F, Ahmed N, Beauregard JM et al (2008) [18F]Fluorinated estradiol derivatives for oestrogen receptor imaging: impact of substituents, formulation and specific activity on the biodistribution in breast tumour-bearing mice. Eur J Nucl Med Mol Imaging 35:1473–1479

    Article  PubMed  Google Scholar 

  18. Beauregard JM, Croteau E, Ahmed N et al (2009) Assessment of human biodistribution and dosimetry of 4-fluoro-11β-methoxy-16α-18F-fluoroestradiol using serial whole-body PET/CT. J Nucl Med 50:100–107

    Article  PubMed  Google Scholar 

  19. Paquette M, Lavallée É, Langlois R et al (2012) Preliminary results of a phase II trial comparing 4FMFES to FES in PET imaging of breast cancer patients [abstract]. World Molecular Imaging Congress 2012, Dublin, Ireland, P896

  20. Turcotte É, Paquette M, Lavallée É et al (2012) Comparison of 4FMFES-PET with FES-PET in a phase II trial to detect estrogen receptor-positive breast cancer: preliminary results [abstract]. J Nucl Med 53 (supplement 1):281

    Google Scholar 

  21. Paquette M, Ouellet R, Archambault M et al (2012) [18F]-Fluoroestradiol quantitative PET imaging to differentiate ER+ and ERα-knockdown breast tumors in mice. Nucl Med Biol 39:57–64

    Article  PubMed  CAS  Google Scholar 

  22. Lim JL, Zheng L, Berridge MS, Tewson TJ (1996) The use of 3-methoxymethyl-16-beta, 17-beta-epiestriol-O-cyclic sulfone as the precursor in the synthesis of [18F]-16α-fluoroestradiol. Nucl Med Biol 23:911–915

    Article  PubMed  CAS  Google Scholar 

  23. Ahmed N, Langlois R, Rodrigue S et al (2007) Automated synthesis of 11β-methoxy-4,16α-[18F]difluoroestradiol (4F-M[18F]FES) for estrogen receptor imaging by positron emission tomography. Nucl Med Biol 34:459–464

    Article  PubMed  CAS  Google Scholar 

  24. Lanari C, Lüthy I, Lamb CA et al (2001) Five novel hormone-responsive cell lines derived from murine mammary ductal carcinomas: in vivo and in vitro effects of estrogens and progestins. Cancer Res 61:293–302

    PubMed  CAS  Google Scholar 

  25. Fabris V, Lamb CA, Keck C et al (2003) Karyotypic evolution of four novel mouse mammary carcinoma cell lines. Identification of marker chromosomes by fluorescence in situ hybridization. Cancer Genet Cytogenet 142:36–45

    Article  PubMed  CAS  Google Scholar 

  26. Paquette M, Tremblay S, Bénard F, Lecomte R (2012) Quantitative hormone therapy follow-up in an ER+/ERαKD mouse tumor model using FDG and [11C]-methionine PET imaging. Eur J Nucl Med Mol Imag Res 2:61

    Google Scholar 

  27. Bergeron M, Cadorette J, Beaudoin JF et al (2009) Performance evaluation of the LabPET™ APD-based digital PET scanner. IEEE Trans Nucl Sci 56:10–16

    Article  Google Scholar 

  28. Bergeron M, Cadorette J, Tétrault MA et al (2013) Imaging performance of LabPET APD-based digital PET scanner for pre-clinical research. Phys Med Biol (in press)

  29. Selivanov V, Picard Y, Cadorette J, Rodrigue S, Lecomte R (2000) Detector response models for statistical iterative image reconstruction in high resolution PET. IEEE Trans Nucl Sci 47:1168–1175

    Article  Google Scholar 

  30. VanBrocklin HF, Carlson KE, Katzenellenbogen JA, Welch MJ (1993) 16β-([18F]Fluoro)estrogens: systematic investigation of a new series of fluorine-18-labeled estrogens as potential imaging agents for estrogen-receptor-positive breast tumors. J Med Chem 36:1619–1629

    Article  PubMed  CAS  Google Scholar 

  31. Seimbille Y, Bénard F, Rousseau J et al (2004) Impact on estrogen receptor binding and target tissue uptake of [18F]fluorine substitution at the 16α-position of fulvestrant (Faslodex; ICI 182,780). Nucl Med Biol 31:691–698

    Article  PubMed  CAS  Google Scholar 

  32. Raynaud JP, Bouton MM, Gallet-Bourquin D et al (1973) Comparative study of estrogen action. Mol Pharmacol 9:520–533

    PubMed  CAS  Google Scholar 

  33. Stalford AC, Maggs JL, Gilchrist TL, Park BK (1997) The metabolism of 16-fluoroestradiols in vivo: chemical strategies for restricting the oxidative biotransformations of an estrogen receptor imaging agent. Steroids 62:750–761

    Article  PubMed  CAS  Google Scholar 

  34. Paquette M, Lavallée É, Langlois R, et al. (2012) 4FMFES and FES PET imaging from mice to human: different metabolism, different results [abstract]. World Molecular Imaging Congress 2012, Dublin, Ireland, P875

  35. Peterson LM, Kurland BF, Linka JM et al (2011) Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol 38:969–978

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jean-François Beaudoin, Jules Cadorette, and Maxime Paillé for operating and maintaining the LabPET™ scanners. We also thank Mélanie Archambault, Véronique Dumulon-Perrault, and Caroline Mathieu for technical assistance and animal care. This project was supported by the Canadian Institutes of Health Research grant #MOP-86717 and the Canadian Breast Cancer Research Alliance grant #015388.

Conflict of Interest

The authors have no conflict of interest to declare regarding this paper or the results therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Lecomte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paquette, M., Phoenix, S., Ouellet, R. et al. Assessment of the Novel Estrogen Receptor PET Tracer 4-Fluoro-11β-methoxy-16α-[18F]fluoroestradiol (4FMFES) by PET Imaging in a Breast Cancer Murine Model. Mol Imaging Biol 15, 625–632 (2013). https://doi.org/10.1007/s11307-013-0638-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0638-7

Key words

Navigation