Skip to main content

Advertisement

Log in

Monitoring Dynamic Interactions Between Breast Cancer Cells and Human Bone Tissue in a Co-culture Model

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Bone is a preferential site of breast cancer metastasis, and models are needed to study this process at the level of the microenvironment. We have used bioluminescence imaging (BLI) and multiplex biomarker immunoassays to monitor dynamic breast cancer cell behaviors in co-culture with human bone tissue.

Procedures

Femur tissue fragments harvested from hip replacement surgeries were co-cultured with luciferase-positive MDA-MB-231-fLuc cells. BLI was performed to quantify breast cell proliferation and track migration relative to bone tissue. Breast cell colonization of bone tissues was assessed with immunohistochemistry. Biomarkers in co-culture supernatants were profiled with MILLIPLEX® immunoassays.

Results

BLI demonstrated increased MDA-MB-231-fLuc cell proliferation (p < 0.001) in the presence vs. absence of bones and revealed breast cell migration toward bone. Immunohistochemistry illustrated MDA-MB-231-fLuc cell colonization of bone, and MILLIPLEX® profiles of culture supernatants suggested breast/bone crosstalk.

Conclusions

Breast cell behaviors that facilitate metastasis occur reproducibly in human bone tissue co-cultures and can be monitored and quantified using BLI and multiplex immunoassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Coleman RE, Rubens RD (1987) The clinical course of bone metastases from breast cancer. Br J Cancer 55:61–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein RH, Weinberg RA, Rosenblatt M (2010) Of mice and (wo)men: mouse models of breast cancer metastasis to bone. J Bone Miner Res Off J Am Soc Bone Miner Res 25:431–436

    Article  Google Scholar 

  4. Kim IS, Baek SH (2010) Mouse models for breast cancer metastasis. Biochem Biophys Res Commun 394:443–447

    Article  CAS  PubMed  Google Scholar 

  5. Kuperwasser C, Dessain S, Bierbaum BE et al (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65:6130–6138

    Article  CAS  PubMed  Google Scholar 

  6. Mollard S, Mousseau Y, Baaj Y et al (2011) How can grafted breast cancer models be optimized? Cancer Biol Ther 12:855–864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lim PK, Bliss SA, Patel SA et al (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560

    Article  CAS  PubMed  Google Scholar 

  8. Oh HS, Moharita A, Potian JG et al (2004) Bone marrow stroma influences transforming growth factor-beta production in breast cancer cells to regulate c-myc activation of the preprotachykinin-I gene in breast cancer cells. Cancer Res 64:6327–6336

    Article  CAS  PubMed  Google Scholar 

  9. Moharita AL, Taborga M, Corcoran KE et al (2006) SDF-1alpha regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood 108:3245–3252

    Article  CAS  PubMed  Google Scholar 

  10. Koro K, Parkin S, Pohorelic B et al (2011) Interactions between breast cancer cells and bone marrow derived cells in vitro define a role for osteopontin in affecting breast cancer cell migration. Breast Cancer Res Treat 126:73–83

    Article  CAS  PubMed  Google Scholar 

  11. Pohorelic B, Singh R, Parkin S et al (2012) Role of Src in breast cancer cell migration and invasion in a breast cell/bone-derived cell microenvironment. Breast Cancer Res treat 133:201–214

    Article  CAS  PubMed  Google Scholar 

  12. Nicola MH, Bizon R, Machado JJ et al (2003) Breast cancer micrometastases: different interactions of carcinoma cells with normal and cancer patients’ bone marrow stromata. Clin Exp Metastasis 20:471–479

    Article  PubMed  Google Scholar 

  13. Korah R, Boots M, Wieder R (2004) Integrin alpha5beta1 promotes survival of growth-arrested breast cancer cells: an in vitro paradigm for breast cancer dormancy in bone marrow. Cancer Res 64:4514–4522

    Article  CAS  PubMed  Google Scholar 

  14. Martin FT, Dwyer RM, Kelly J et al (2010) Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res treat 124:317–326

    Article  CAS  PubMed  Google Scholar 

  15. Rajski M, Vogel B, Baty F et al (2012) Global gene expression analysis of the interaction between cancer cells and osteoblasts to predict bone metastasis in breast cancer. PloS One 7:e29743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Krishnan V, Shuman LA, Sosnoski DM et al (2011) Dynamic interaction between breast cancer cells and osteoblastic tissue: comparison of two- and three-dimensional cultures. J Cell Physiol 226:2150–2158

    Article  CAS  PubMed  Google Scholar 

  17. Bussard KM, Venzon DJ, Mastro AM (2010) Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer. J Cell Biochem 111:1138–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Weatherholt AM, Fuchs RK, Warden SJ (2012) Specialized connective tissue: bone, the structural framework of the upper extremity. J Hand Ther Off J Am Soc Hand Ther 25:123–131, quiz 132

    Article  Google Scholar 

  20. Thorne SH, Barak Y, Liang W et al (2009) CNOB/ChrR6, a new prodrug enzyme cancer chemotherapy. Mol Cancer Ther 8:333–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Braun S, Pantel K, Muller P et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533

    Article  CAS  PubMed  Google Scholar 

  22. Coombes RC, Berger U, Mansi J, et al. (1986) Prognostic significance of micrometastases in bone marrow in patients with primary breast cancer. NCI Monogr (1):51–53

  23. Cote RJ, Rosen PP, Lesser ML et al (1991) Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol Off J Am Soc Clin Oncol 9:1749–1756

    CAS  Google Scholar 

  24. Diel IJ, Kaufmann M, Costa SD et al (1996) Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Nat Cancer Inst 88:1652–1658

    Article  CAS  PubMed  Google Scholar 

  25. Gebauer G, Fehm T, Merkle E et al (2001) Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J Clin Oncol Off J Am Soc Clin Oncol 19:3669–3674

    CAS  Google Scholar 

  26. Krishnamurthy S, Cristofanilli M, Singh B et al (2010) Detection of minimal residual disease in blood and bone marrow in early stage breast cancer. Cancer 116:3330–3337

    Article  PubMed  Google Scholar 

  27. Karrison TG, Ferguson DJ, Meier P (1999) Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst 91:80–85

    Article  CAS  PubMed  Google Scholar 

  28. Willis L, Alarcon T, Elia G et al (2010) Breast cancer dormancy can be maintained by small numbers of micrometastases. Cancer Res 70:4310–4317

    Article  CAS  PubMed  Google Scholar 

  29. Goss P, Chambers A (2010) Does tumour dormancy offer a therapeutic target? Nat Rev Cancer 10:871–877

    Article  CAS  PubMed  Google Scholar 

  30. Guise TA, Mohammad KS, Clines G et al (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12:6213s–6216s

    Article  CAS  PubMed  Google Scholar 

  31. Schiller KR, Zillhardt MR, Alley J, Borjesson DL, Beitz AJ, Mauro LJ (2009) Secretion of MCP-1 and other paracrine factors in a novel tumor-bone coculture model. BMC Cancer 9:45

    Article  PubMed Central  PubMed  Google Scholar 

  32. Curtin P, Youm H, Salih E (2012) Three-dimensional cancer-bone metastasis model using ex-vivo co-cultures of live calvarial bones and cancer cells. Biomaterials 33:1065–1078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Sosnoski DM, Krishnan V, Kraemer WJ et al (2012) Changes in cytokines of the bone microenvironment during breast cancer metastasis. Int J Breast Cancer 2012:160265

    Article  PubMed Central  PubMed  Google Scholar 

  34. Nieman KM, Kenny HA, Penicka CV et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503

    Article  CAS  PubMed  Google Scholar 

  35. Owen S, Ye L, Sanders AJ, Mason MD, Jiang WG (2013) Expression profile of receptor activator of nuclear-kappaB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) in breast cancer. Anticancer Res 33:199–206

    Google Scholar 

  36. Uemura H, Yasui T, Kiyokawa M et al (2002) Serum osteoprotegerin/osteoclastogenesis-inhibitory factor during pregnancy and lactation and the relationship with calcium-regulating hormones and bone turnover markers. J Endocrinol 174:353–359

    Article  CAS  PubMed  Google Scholar 

  37. Fata JE, Kong YY, Li J et al (2000) The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 103:41–50

    Article  CAS  PubMed  Google Scholar 

  38. Labovsky V, Vallone VB, Martinez LM et al (2012) Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines. Cancer Cell Int 12:29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Rachner TD, Benad P, Rauner M et al (2009) Osteoprotegerin production by breast cancer cells is suppressed by dexamethasone and confers resistance against TRAIL-induced apoptosis. J Cell Biochem 108:106–116

    Article  CAS  PubMed  Google Scholar 

  40. Butler JM, Kobayashi H, Rafii S (2010) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10:138–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Riccio AI, Wodajo FM, Malawer M (2007) Metastatic carcinoma of the long bones. Am Fam Physician 76:1489–1494

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the Alternative Research & Development Foundation, 107588, and the National Institute of Health, 1U54CA136465-04S1. We gratefully acknowledge Chona Enrile for tissue processing and slide preparation; Edward Gilbert, H.T. (ASCP), QIHC, for immunohistochemistry; and Nancy Bellagamba for facilitating the collection of THR specimens.

Conflict of Interest

Dr. Contag is a founder and consultant for Xenogen Corporation (now Caliper Life Sciences/PerkinElmer, Inc.). Dr. Lie is an employee at EMD Millipore Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie L. King.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contag, C.H., Lie, WR., Bammer, M.C. et al. Monitoring Dynamic Interactions Between Breast Cancer Cells and Human Bone Tissue in a Co-culture Model. Mol Imaging Biol 16, 158–166 (2014). https://doi.org/10.1007/s11307-013-0685-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0685-0

Key words

Navigation