Skip to main content

Advertisement

Log in

Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastoma (GBM) neurosurgical resection relies on contrast-enhanced MRI-based neuronavigation. However, it is well-known that infiltrating tumor extends beyond contrast enhancement. Fluorescence-guided surgery (FGS) using 5-aminolevulinic acid (5-ALA) was evaluated to improve extent of resection (EOR) of GBMs. Preoperative morphological tumor metrics were also assessed.

Procedures

Thirty patients from a phase II trial evaluating 5-ALA FGS in newly diagnosed GBM were assessed. Tumors were segmented preoperatively to assess morphological features as well as postoperatively to evaluate EOR and residual tumor volume (RTV).

Results

Median EOR and RTV were 94.3 % and 0.821 cm3, respectively. Preoperative surface area to volume ratio and RTV were significantly associated with overall survival, even when controlling for the known survival confounders.

Conclusions

This study supports claims that 5-ALA FGS is helpful at decreasing tumor burden and prolonging survival in GBM. Moreover, morphological indices are shown to impact both resection and patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bloch O, Han SJ, Cha S et al (2012) Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J Neurosurg 117:1032–1038

    Article  PubMed  Google Scholar 

  2. Stummer W, Meinel T, Ewelt C et al (2012) Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. J Neurooncol 108:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardesty DA, Sanai N (2012) The value of glioma extent of resection in the modern neurosurgical era. Front Neurol 3:140–150

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chaichana KL, Cabrera-Aldana EE, Jusue-Torres I et al (2014) When gross total resection of a glioblastoma is possible, how much resection should be achieved? World Neurosurg 82:e257–265

    Article  PubMed  Google Scholar 

  5. Chaichana KL, Jusue-Torres I, Navarro-Ramirez R et al (2014) Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neurol Oncol 16:113–122

    Article  Google Scholar 

  6. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    Article  CAS  PubMed  Google Scholar 

  7. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764

    Article  PubMed  Google Scholar 

  8. Sanai N, Polley MY, McDermott MW et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8

    Article  PubMed  Google Scholar 

  9. Vogelbaum MA, Jost S, Aghi MK et al (2012) Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery 70:234–243

    Article  PubMed  Google Scholar 

  10. Kubben PL, Scholtes F, Schijns OE et al (2014) Intraoperative magnetic resonance imaging versus standard neuronavigation for the neurosurgical treatment of glioblastoma: a randomized controlled trial. Surg Neurol Int 5:70–79

    PubMed  PubMed Central  Google Scholar 

  11. Hadjipanayis CG, Widhalm G, Stummer W (2015) What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery

  12. Hinnen P, de Rooij FW, van Velthuysen ML et al (1998) Biochemical basis of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation: a study in patients with (pre)malignant lesions of the oesophagus. Br J Cancer 78:679–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stummer W, Stocker S, Novotny A et al (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B 45:160–169

    Article  CAS  PubMed  Google Scholar 

  14. Gibson SL, Havens JJ, Metz L, Hilf R (2001) Is δ-aminolevulinic acid dehydratase rate limiting in heme biosynthesis following exposure of cells to δ-aminolevulinic acid? Photochem Photobiol 73:312–317

    Article  CAS  PubMed  Google Scholar 

  15. Collaud S, Juzeniene A, Moan J, Lange N (2004) On the selectivity of 5-aminolevulinic acid-induced protoporphyrin IX formation. Curr Med Chem Anticancer Agents 4:301–316

    Article  CAS  PubMed  Google Scholar 

  16. Novotny A, Xiang J, Stummer W et al (2000) Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. J Neurochem 75:321–328

    Article  CAS  PubMed  Google Scholar 

  17. Liu JT, Meza D, Sanai N (2014) Trends in fluorescence image-guided surgery for gliomas. Neurosurgery 75:61–71

    Article  PubMed  PubMed Central  Google Scholar 

  18. Olivo M, Wilson BC (2004) Mapping ALA-induced PPIX fluorescence in normal brain and brain tumour using confocal fluorescence microscopy. Int J Oncol 25:37–45

    CAS  PubMed  Google Scholar 

  19. Rud E, Gederaas O, Hogset A, Berg K (2000) 5-aminolevulinic acid, but not 5-aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters. Photochem Photobiol 71:640–647

    Article  CAS  PubMed  Google Scholar 

  20. Ennis SR, Novotny A, Xiang J et al (2003) Transport of 5-aminolevulinic acid between blood and brain. Brain Res 959:226–234

    Article  CAS  PubMed  Google Scholar 

  21. Zhao SG, Chen XF, Wang LG et al (2013) Increased expression of ABCB6 enhances protoporphyrin IX accumulation and photodynamic effect in human glioma. Ann Surg Oncol 20:4379–4388

    Article  PubMed  Google Scholar 

  22. Xiang J, Hu Y, Smith DE, Keep RF (2006) PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes. Brain Res 1122:18–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanai N (2012) Emerging operative strategies in neurosurgical oncology. Curr Opin Neurol 25:756–766

    Article  PubMed  Google Scholar 

  24. Della Puppa A, De Pellegrin S, d’Avella E et al (2013) 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochir (Wien) 155:965–972

    Article  Google Scholar 

  25. Schucht P, Beck J, Abu-Isa J et al (2012) Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery 71:927–935

    Article  PubMed  Google Scholar 

  26. Schucht P, Seidel K, Beck J et al (2014) Intraoperative monopolar mapping during 5-ALA-guided resections of glioblastomas adjacent to motor eloquent areas: evaluation of resection rates and neurological outcome. Neurosurg Focus 37:E16–24

    Article  PubMed  Google Scholar 

  27. Keles GE, Chang EF, Lamborn KR et al (2006) Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J Neurosurg 105:34–40

    Article  PubMed  Google Scholar 

  28. Pope WB, Sayre J, Perlina A et al (2005) MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 26:2466–2474

    PubMed  Google Scholar 

  29. Grabowski MM, Recinos PF, Nowacki AS et al (2014) Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg 121:1115–1123

    Article  PubMed  Google Scholar 

  30. Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  PubMed  Google Scholar 

  31. Hadjipanayis CG, Jiang H, Roberts DW, Yang L (2011) Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening. Semin Oncol 38:109–118

    Article  PubMed  PubMed Central  Google Scholar 

  32. Van Meir EG, Hadjipanayis CG, Norden AD et al (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60:166–193

    Article  PubMed  PubMed Central  Google Scholar 

  33. Barbosa BJ, Mariano ED, Batista CM et al (2015) Intraoperative assistive technologies and extent of resection in glioma surgery: a systematic review of prospective controlled studies. Neurosurg Rev 38:217–226

    Article  PubMed  Google Scholar 

  34. Stummer W, Novotny A, Stepp H et al (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013

    Article  CAS  PubMed  Google Scholar 

  35. van den Bent MJ, Vogelbaum MA, Wen PY et al (2009) End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald’s Criteria. J Clin Oncol 27:2905–2908

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

  37. Hughes I, Hase T (2010) Error propagation. In: measurements and their uncertainties: a practical guide to modern error analysis. New York: Oxford University Press Inc, New York, pp 37–52

    Google Scholar 

  38. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    CAS  PubMed  Google Scholar 

  39. Tofts PS, Collins DJ (2011) Multicentre imaging measurements for oncology and in the brain. BJR 84:S213–226

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31:1426–1438

    Article  PubMed  Google Scholar 

  41. Bauer S, Wiest R, Nolte LP, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58:R97–129

    Article  PubMed  Google Scholar 

  42. White DR, Houston AS, Sampson WF, Wilkins GP (1999) Intra- and interoperator variations in region-of-interest drawing and their effect on the measurement of glomerular filtration rates. Clin Nucl Med 24:177–181

    Article  CAS  PubMed  Google Scholar 

  43. Sorensen AG, Patel S, Harmath C et al (2001) Comparison of diameter and perimeter methods for tumor volume calculation. J Clin Oncol 19:551–557

    CAS  PubMed  Google Scholar 

  44. Chow DS, Qi J, Guo X et al (2014) Semiautomated volumetric measurement on postcontrast MR imaging for analysis of recurrent and residual disease in glioblastoma multiforme. AJNR Am J Neuroradiol 35:498–503

    Article  CAS  PubMed  Google Scholar 

  45. Cordova JS, Schreibmann E, Hadjipanayis CG et al (2014) Quantitative tumor segmentation for evaluation of extent of glioblastoma resection to facilitate multisite clinical trials. Transl Oncol 7:40–47

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chang HH, Zhuang AH, Valentino DJ, Chu WC (2009) Performance measure characterization for evaluating neuroimage segmentation algorithms. Neuroimage 47:122–135

    Article  PubMed  Google Scholar 

  47. Collett D (2003) Strategy for model selection. In: Chatfield C, Lindsey J, Tanner M, Zidek J (eds) Modeling binary data. Chapman & Hall/CRC, Boca Raton, pp 91–97

    Google Scholar 

  48. Orringer D, Lau D, Khatri S et al (2012) Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 117:851–859

    Article  PubMed  Google Scholar 

  49. Sanai N, Berger MS (2011) Extent of resection influences outcomes for patients with gliomas. Rev Neurol (Paris) 167:648–654

    Article  CAS  Google Scholar 

  50. Paravati AJ, Heron DE, Landsittel D et al (2011) Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of radiation therapy oncology group-recursive partitioning analysis in the IMRT and temozolomide era. J Neurooncol 104:339–349

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gutman DA, Cooper LA, Hwang SN et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267:560–569

    Article  PubMed  PubMed Central  Google Scholar 

  52. Crawford FW, Khayal IS, McGue C et al (2009) Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM. J Neurooncol 91:337–351

    Article  PubMed  PubMed Central  Google Scholar 

  53. Saraswathy S, Crawford FW, Lamborn KR et al (2009) Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J Neurooncol 91:69–81

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health grants R21 CA141836 (CGH/CAH/HS), a predoctoral fellowship F31 CA180319 (JSC), and a research grant from Nx Development Corp (CGH).

Compliance with Ethical Standards

Conflict of Interest

Dr. Costas Hadjipanayis receives intellectual fees from Nx Development Corp (Miami, Florida).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyunsuk Shim or Costas G. Hadjipanayis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordova, J.S., Gurbani, S.S., Holder, C.A. et al. Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery. Mol Imaging Biol 18, 454–462 (2016). https://doi.org/10.1007/s11307-015-0900-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0900-2

Key words

Navigation