Skip to main content

Advertisement

Log in

Targeted Superparamagnetic Iron Oxide Nanoparticles for In Vivo Magnetic Resonance Imaging of T-Cells in Rheumatoid Arthritis

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study is to develop a targeted nanoparticle platform for T cell labeling and tracking in vivo.

Procedures

Through carboxylation of the polyethylene glycol (PEG) surface of SPION, carboxylated-PEG-SPION (IOPC) was generated as a precursor for further conjugation with the targeting probe. The IOPC could readily cross-link with a variety of amide-containing molecules by exploiting the reaction between 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide and N-hydroxysuccinimide. The subsequent conjugation of monoclonal anti-CD3 antibody with IOPC made it possible to construct a magnetic resonance imaging (MRI) contrast agente (CA) that targets T cells, named IOPC-CD3.

Results

IOPC-CD3 was found to have high transverse relaxivity, good targeting selectivity, and good safety profile in vitro. The utility of this newly synthesized CA was explored in an in vivo rodent collagen-induced arthritis (CIA) model of rheumatoid arthritis. Serial MRI experiments revealed a selective decrease in the signal-to-noise ratio of the femoral growth plates of CIA rats infused with IOPC-CD3, with this finding being consistent with immunohistochemical results showing the accumulation of T cells and iron oxide nanoparticles in the corresponding region.

Conclusions

Together with the abovementioned desirable features, these results indicate that IOPC-CD3 offers a promising prospect for a wide range of cellular and molecular MRI applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shah M, Catafau AM (2014) Molecular imaging insights into neurodegeneration: focus on tau PET radiotracers. J Nucl Med 55:871–874

    Article  CAS  PubMed  Google Scholar 

  2. Lee TS, Quek SY, Krishnan KR (2014) Molecular imaging for depressive disorders. Am J Neuroradiol 35:S44–S54

    Article  PubMed  Google Scholar 

  3. Song F, Tian M, Zhang H (2014) Molecular imaging in stem cell therapy for spinal cord injury. BioMed Res Int 2014:759514

    PubMed  PubMed Central  Google Scholar 

  4. Mankoff DA, Pryma DA, Clark AS (2014) Molecular imaging biomarkers for oncology clinical trials. J Nucl Med 55:525–528

    Article  CAS  PubMed  Google Scholar 

  5. Belkic D, Belkic K (2013) Molecular imaging in the framework of personalized cancer medicine. Isr Med Assoc J 15:665–672

    PubMed  Google Scholar 

  6. Hildebrandt IJ, Gambhir SS (2004) Molecular imaging applications for immunology. Clin Immunol 111:210–224

    Article  CAS  PubMed  Google Scholar 

  7. Qiu LH, Zhang JW, Li SP, et al. (2015) Molecular imaging of angiogenesis to delineate the tumor margins in glioma rat model with endoglin-targeted paramagnetic liposomes using 3 T MRI. J Magn Reson Imaging 41:1056–1064

    Article  PubMed  Google Scholar 

  8. Blezer EL, Deddens LH, Kooij G, et al. (2015) In vivo MR imaging of intercellular adhesion molecule-1 expression in an animal model of multiple sclerosis. Contrast Media Mol Imaging 10:111–121

    Article  CAS  PubMed  Google Scholar 

  9. You XG, Tu R, Peng ML, et al. (2014) Molecular magnetic resonance probe targeting VEGF165: preparation and in vitro and in vivo evaluation. Contrast Media Mol Imaging 9:349–354

    Article  CAS  PubMed  Google Scholar 

  10. Shahbazi-Gahrouei D, Abdolahi M (2013) Superparamagnetic iron oxide-C595: potential MR imaging contrast agents for ovarian cancer detection. J Med Physics 38:198–204

    Article  Google Scholar 

  11. Sillerud LO, Solberg NO, Chamberlain R, et al. (2013) SPION-enhanced magnetic resonance imaging of Alzheimer's disease plaques in AbetaPP/PS-1 transgenic mouse brain. J. Alzheimers Dis 34:349–365

    CAS  Google Scholar 

  12. Chen CL, Zhang H, Ye Q, et al. (2011) A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging. Mol Imaging Biol 13:825–839

    Article  PubMed  PubMed Central  Google Scholar 

  13. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  14. De Palma R, Peeters S, Van Bael MJ, et al. (2007) Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater 19:1821–1831

    Article  CAS  Google Scholar 

  15. Glazer AN (1996) Bioconjugate techniques - Hermanson,GT. Nature 381:290–290

    Article  CAS  Google Scholar 

  16. Wu YL, Ye Q, Foley LM, et al. (2006) In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI. PNAS 103:1852–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kannan K, Ortmann RA, Kimpel D (2005) Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology 12:167–181

    Article  PubMed  Google Scholar 

  18. Cremer MA, Townes AS, Kang AH (1984) Collagen-induced arthritis in rodents. A review of clinical, histological and immunological features. Ryumachi [Rheumatism] 24:45–56

    CAS  Google Scholar 

  19. Moore AR (2003) Collagen-induced arthritis. Methods Mol Biol 225:175–179

    PubMed  Google Scholar 

  20. Trentham DE, Townes AS, Kang AH (1977) Autoimmunity to type II collagen an experimental model of arthritis. J Exp Med 146:857–868

    Article  CAS  PubMed  Google Scholar 

  21. Arami H, Khandhar A, Liggitt D, Krishnan KM (2015) In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev 44:8576–8607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang ZB, Song LN, Dong JL, et al. (2013) A promising combo gene delivery system developed from (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles and cationic polymers. J Nanopart Res 15:1659

  23. Acres RG, Ellis AV, Alvino J, et al. (2012) Molecular structure of 3-Aminopropyltriethoxysilane layers formed on Silanol-terminated silicon surfaces. J Phys Chem C 116:6289–6297

    Article  CAS  Google Scholar 

  24. Yu M, Huang SH, Yu KJ, Clyne AM (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13:5554–5570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park JY, Daksha P, Lee GH, et al. (2008) Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology 19:365603

  26. Mahmoudi M, Simchi A, Imani M, Hafeli UO (2009) Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol Fumarate coating for application in imaging and drug delivery. J Phys Chem C 113:8124–8131

    Article  CAS  Google Scholar 

  27. Bloemen M, Brullot W, Luong TT, et al. (2012) Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J Nanopart Res 14:1100

  28. Park J, An KJ, Hwang YS, et al. (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  CAS  PubMed  Google Scholar 

  29. Wu YH, Song MJ, Xin ZA, et al. (2011) Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection. Nanotechnology 22:225703

  30. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  31. Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience 3:66–73

    Article  PubMed  Google Scholar 

  32. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553–1561

    Article  CAS  PubMed  Google Scholar 

  33. Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15:493–496

    Article  CAS  PubMed  Google Scholar 

  34. Kircher MF, Willmann JK (2012) Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 263:633–643

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40

    PubMed  PubMed Central  Google Scholar 

  36. Jee WS, Li XJ, Ke HZ, et al. (1993) Application of computer-based histomorphometry to the quantitative analysis of methylprednisolone-treated adjuvant arthritis in rats. Bone Miner 22:221–247

    Article  CAS  PubMed  Google Scholar 

  37. Bunger C, Bunger EH, Harving S, et al. (1984) Growth disturbances in experimental juvenile arthritis of the dog knee. Clin Rheumatol 3:181–188

    Article  CAS  PubMed  Google Scholar 

  38. Takahi K, Hashimoto J, Hayashida K, et al. (2002) Early closure of growth plate causes poor growth of long bones in collagen-induced arthritis rats. J Muscuoskelet Neuronal Interact 2:344–351

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Science Council (NSC 99-2314-B-016-31-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chang.

Ethics declarations

Conflict of Interest

The authors report having a pending patent related to subject matter discussed in this article.

Additional information

Chih-Lung Chen and Tiing Yee Siow these authors made equal contributions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CL., Siow, T.Y., Chou, CH. et al. Targeted Superparamagnetic Iron Oxide Nanoparticles for In Vivo Magnetic Resonance Imaging of T-Cells in Rheumatoid Arthritis. Mol Imaging Biol 19, 233–244 (2017). https://doi.org/10.1007/s11307-016-1001-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-1001-6

Key words

Navigation