Skip to main content

Advertisement

Log in

Resting arterial oxygen saturation and breathing frequency as predictors for acute mountain sickness development: A prospective cohort study

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Introduction

The study evaluated the predictive value of arterial oxygen saturation (SaO2) after 30-min hypoxic exposure on subsequent development of acute mountain sickness (AMS) and tested if additional resting cardio-respiratory measurements improve AMS prognosis.

Methods

Fifty-five persons were exposed to a simulated altitude of 4,500 m (normobaric hypoxia, FiO2 = 12.5 %). Cardio-respiratory parameters, SaO2, blood lactate, and blood pressure were measured after 30 min of exposure. AMS symptoms were recorded after 3, 6, 9, and 12 h (Lake-Louise Score). Three models, based on previously published regression equations for altitude-dependent SaO2 values of AMS-susceptible (SaO2-suscept = 98.34 − 2.72 ∗ alt − 0.35 ∗ alt2) and AMS-resistant (SaO2-resist = 96.51 + 0.68 ∗ alt − 0.80 ∗ alt2) persons, were applied to predict AMS. Additionally, multivariate logistic regression analyses were conducted to test if additional resting measurements improve AMS prediction.

Results

The three models correctly predicted AMS development in 62 %, 67 %, and 69 % of the cases. No model showed combined sensitivity and specificity >80 %. Sequential logistic regression revealed that the inclusion of tidal volume or breathing frequency in addition to SaO2 improved overall AMS prediction, resulting in 78 % and 80 % correct AMS prediction, respectively.

Conclusion

Non-invasive measurements of SaO2 after 30-min hypoxic exposure are easy to perform and have the potential to detect AMS-susceptible individuals with a sufficient sensitivity. The additional determination of breathing frequency can improve success in AMS prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burtscher M (1999) High-altitude headache: epidemiology, pathophysiology, therapy and prophylaxis. Wien Klin Wochenschr 111:830–836

    CAS  PubMed  Google Scholar 

  2. Richalet JP, Donoso MV, Jiménez D, Antezana AM, Hudson C, Cortès G, Osorio J, Leòn A (2002) Chilean miners commuting from sea level to 4500 m: a prospective study. High Alt Med Biol 3:159–166

    Article  PubMed  Google Scholar 

  3. Muza SR (2007) Military applications of hypoxic training for high-altitude operations. Med Sci Sports Exerc 39:1625–1631

    Article  PubMed  Google Scholar 

  4. Burtscher M, Faulhaber M, Flatz M, Likar R, Nachbauer W (2006) Effects of short-term acclimatisation to altitude (3200 m) on aerobic and anaerobic exercise performance. Int J Sports Med 27:629–635

    Article  CAS  PubMed  Google Scholar 

  5. Faulhaber M, Gatterer H, Haider T, Patterson C, Burtscher M (2010) Intermittent hypoxia does not affect endurance performance at moderate altitude in well-trained athletes. J Sports Sci 28:513–519

    Article  PubMed  Google Scholar 

  6. Beidleman BA, Muza SR, Fulco CS, Cymerman A, Ditzler D, Stulz D, Staab JE, Skrinar GS, Lewis SF, Sawka MN (2004) Intermittent altitude exposures reduce acute mountain sickness at 4300 m. Clin Sci 106:321–328

    Article  PubMed  Google Scholar 

  7. Hamilton AJ, Trad LA, Cymerman A (1991) Alteration in human upper extremity motor function during acute exposure to simulated altitude. Aviat Space Environ Med 62:759–764

    CAS  PubMed  Google Scholar 

  8. Regard M, Landis T, Casey J, Maggiorini M, Bärtsch P, Oelz O (1991) Cognitive changes at high altitude in healthy climbers and in climbers developing acute mountain sickness. Aviat Space Environ Med 62:291–295

    CAS  PubMed  Google Scholar 

  9. Li X, Tao F, You H, Pei T, Gao Y (2011) Factors associated with acute mountain sickness in young Chinese men on entering highland areas. Asia Pac J Public Health. doi:10.1177/1010539511427956

    Google Scholar 

  10. Netzer N, Strohl K, Faulhaber M, Gatterer H, Burtscher M (2013) Hypoxia-related altitude illnesses. J Travel Med 20:247–255

    Article  PubMed  Google Scholar 

  11. Montgomery AB, Mills J, Luce JM (1989) Incidence of acute mountain sickness at intermediate altitude. JAMA 261:732–734

    Article  CAS  PubMed  Google Scholar 

  12. Maggiorini M, Buhler B, Walter M, Oelz O (1990) Prevalence of acute mountain sickness in the Swiss Alps. Br Med J 301:853–855

    Article  CAS  Google Scholar 

  13. Kayser B (1991) Acute mountain sickness in western tourists around the Thorong pass (5400 m) in Nepal. J Wilderness Med 2:110–117

    Article  Google Scholar 

  14. Mairer K, Wille M, Bucher T, Burtscher M (2009) Prevalence of acute mountain sickness in the Eastern Alps. High Alt Med Biol 10:239–245

    Article  PubMed  Google Scholar 

  15. Schneider M, Bernasch D, Weymann J, Holle R, Bärtsch P (2002) Acute mountain sickness: influence of susceptibility, preexposure, and ascent rate. Med Sci Sports Exerc 34:1886–1891

    Article  PubMed  Google Scholar 

  16. Rexhaj E, Garcin S, Rimoldi SF, Duplain H, Stuber T, Allemann Y, Sartori C, Scherrer U (2011) Reproducibility of acute mountain sickness in children and adults: a prospective study. Pediatrics 127:e1445–e1448

    Article  PubMed  Google Scholar 

  17. Burtscher M, Szubski C, Faulhaber M (2008) Prediction of the susceptibility to AMS in simulated altitude. Sleep Breath 12:103–108

    Article  PubMed  Google Scholar 

  18. Burtscher M, Flatz M, Faulhaber M (2004) Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia. High Alt Med Biol 5:335–340

    Article  PubMed  Google Scholar 

  19. Roach RC, Bärtsch P, Hackett PH, Oelz O (1993) The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houston CS, Coates G (eds) Hypoxia and molecular medicine. Queen City Printers, Burlington, pp 272–274

    Google Scholar 

  20. Wille M, Gatterer H, Mairer K, Philippe M, Schwarzenbacher H, Faulhaber M, Burtscher M (2012) Short-term intermittent hypoxia reduces the severity of acute mountain sickness. Scand J Med Sci Sports 22:e79–e85

    Article  CAS  PubMed  Google Scholar 

  21. Richalet JP, Larmignat P, Poitrine E, Letournel M, Canoui-Poitrine F (2012) Physiological risk factors for severe high-altitude illness: a prospective co hort study. Am J Respir Crit Care Med 185:192–198

    Article  PubMed  Google Scholar 

  22. Loeppky JA, Icenogle MV, Maes D, Riboni K, Scotto P, Roach RC (2003) Body temperature, autonomic responses, and acute mountain sickness. High Alt Med Biol 4:367–373

    Article  PubMed  Google Scholar 

  23. Bärtsch P, Maggiorini M, Schobersberger W, Shaw S, Rascher W, Girard J, Weidmann P, Oelz O (1991) Enhanced exercise-induced rise of aldosterone and vasopressin preceding mountain sickness. J Appl Physiol 71:136–143

    PubMed  Google Scholar 

  24. Lunt HC, Barwood MJ, Corbett J, Tipton MJ (2010) ‘Cross-adaptation’: habituation to short repeated cold-water immersions affects the response to acute hypoxia in humans. J Physiol 588:3605–3613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hoon R, Sharma S, Balasubramanian B, Chadha K, Matheew O (1976) Urinary catecholamine excretion on acute induction to high altitude (3658 m). J Appl Physiol 41:631–633

    CAS  PubMed  Google Scholar 

  26. Millet GP, Faiss R, Pialoux V (2012) Point: hypobaric hypoxia induces different physiological responses from normobaric hypoxia. J Appl Physiol 112:1783–1784

    Article  PubMed  Google Scholar 

  27. Mounier R, Brugniaux JV (2012) Counterpoint: hypobaric hypoxia does not induce different responses from normobaric hypoxia. J Appl Physiol 112:1784–1786

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The project was funded by the Oesterreichische Nationalbank.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Faulhaber.

Additional information

The percentages of correctly predicted cases were 67 % for M1, 62 % for M2, and 69 % for M3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulhaber, M., Wille, M., Gatterer, H. et al. Resting arterial oxygen saturation and breathing frequency as predictors for acute mountain sickness development: A prospective cohort study. Sleep Breath 18, 669–674 (2014). https://doi.org/10.1007/s11325-013-0932-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-013-0932-2

Keywords

Navigation