Skip to main content
Log in

Co-upregulation of Toll-like receptors 2 and 6 on peripheral blood cells in patients with obstructive sleep apnea

  • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

Toll-like receptor (TLR) 2 can heterodimerise with TLR6 to detect diacylated lipoproteins. Hypoxia inducible factor-1 α co-ordinates selective induction of TLR2 and TLR6 during persistent hypoxia. We hypothesized that TLR 2/6 co-expression may be upregulated by chronic intermittent hypoxia with re-oxygenation (IHR) in obstructive sleep apnea (OSA).

Methods

TLR2/6 expressions on blood immune cells were measured in 144 patients with sleep-disordered breathing (SDB), including primary snoring (PS, n = 24), moderate to severe OSA (MSO, n = 60), very severe OSA (VSO, n = 36), and very severe OSA on continuous positive airway pressure (CPAP) treatment (VSOC, n = 24). An in vitro IHR experiment was also undertaken.

Results

Patients in both the MSO and VSO groups had increased TLR2/6 co-expression on CD16+ neutrophil than those in the PS group. Patients in the VSOC group had reduced TLR2/6 co-expression on neutrophil than those in either the MSO or VSO group. Blood absolute neutrophil count was positively but weakly correlated with TLR2/6 co-expression on neutrophil. TLR2/6 co-expressions on both CD14+ monocyte and CD3+CD4+T helper cell, and TLR2 expressions on both monocyte and T helper cell in SDB patients with low Minimum SaO2 (≦70 %) were all higher than those with high Minimum SaO2. In vitro IHR for 1–4 days resulted in TLR2/6 co-upregulation on both neutrophil and monocyte.

Conclusions

OSA patients had increased TLR2/6 co-expressions on blood immune cells, which were related to their immune cell counts and could be reversed with CPAP treatment. In vitro IHR could induce TLR2/6 co-upregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lavie L (2003) Obstructive sleep apnoea syndrome—an oxidative stress disorder. Sleep Med Rev 7:35–51

    Article  PubMed  Google Scholar 

  2. Dyugovskaya L, Polyakov A, Lavie P, Lavie L (2008) Delayed neutrophil apoptosis in patients with sleep apnea. Am J Respir Crit Care Med 177:544–554

    Article  CAS  PubMed  Google Scholar 

  3. Dyugovskaya L, Polyakov A, Ginsberg D, Lavie P, Lavie L (2011) Molecular pathways of spontaneous and TNF-{alpha}-mediated neutrophil apoptosis under intermittent hypoxia. Am J Respir Cell Mol Biol 45:154–162

    Article  CAS  PubMed  Google Scholar 

  4. Hoffmann MS, Singh P, Wolk R, Narkiewicz K (2013) Obstructive sleep apnea and intermittent hypoxia increase expression of dual specificity phosphatase 1. Atherosclerosis 231:378–383

    Article  CAS  PubMed  Google Scholar 

  5. Mkaddem SB, Bens M, Vandewalle A (2010) Differential activation of Toll-like receptor-mediated apoptosis induced by hypoxia. Oncotarget 1:741–750

    PubMed Central  PubMed  Google Scholar 

  6. Petersen B, Bloch KD, Ichinose F, Shin HS, Shigematsu M, Bagchi A, Zapol WM, Hellman J (2008) Activation of Toll-like receptor 2 impairs hypoxic pulmonary vasoconstriction in mice. Am J Physiol Lung Cell Mol Physiol 294:L300–L308

    Article  CAS  PubMed  Google Scholar 

  7. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467:972–976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Stridh L, Smith PL, Naylor AS, Wang X, Mallard C (2011) Regulation of Toll-like receptor 1 and −2 in neonatal mice brains after hypoxia-ischemia. J Neuroinflammation 8:45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Arslan F, Smeets MB, O’Neill LA, Keogh B, McGuirk P, Timmers L, Tersteeg C, Hoefer IE, Doevendans PA, Pasterkamp G, de Kleijn DP (2010) Myocardial ischemia/reperfusion injury is mediated by leukocytic Toll-like receptor-2 and reduced by systemic administration of a novel anti-Toll-like receptor-2 antibody. Circulation 121:80–90

    Article  CAS  PubMed  Google Scholar 

  10. Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, Kirschning CJ, Akira S, van der Poll T, Weening JJ, Florquin S (2005) Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 115:2894–2903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Vu AT, Baba T. Chen X, Le TA, Kinoshita H, Xie Y, Kamijo S, Hiramatsu K, Ikeda S, Ogawa H, Okumura K, Takai T (2010) Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the TLR 2-TLR 6 pathway. J Allergy Clin Immunol 126: 985–993, 993 e981-983

  12. McGowin CL, Ma L, Martin DH, Pyles RB (2009) Mycoplasma genitalium-encoded MG309 activates NF–kappaB via TLR2/6 to elicit proinflammatory cytokine secretion from human genital epithelial cells. Infect Immun 77:1175–1181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bulut Y, Faure E, Thomas L, Equils O, Arditi M (2001) Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 167:987–994

    Article  CAS  PubMed  Google Scholar 

  14. Kuhlicke J, Frick JS, Morote-Garcia JC, Rosenberger P, Eltzschig HK (2007) Hypoxia inducible factor (HIF)-1 coordinates induction of Toll-like receptors TLR2 and TLR6 during hypoxia. PLoS ONE 2:e1364

    Article  PubMed Central  PubMed  Google Scholar 

  15. Grote K, Schuett H, Salguero G, Grothusen C, Jagielska J, Drexler H, Muhlradt PF, Schieffer B (2010) TLR2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood 115:2543–2552

    Article  CAS  PubMed  Google Scholar 

  16. Iber C, Ancoli-Israel S, Chesson A, Quan S, American Academy of Sleep Medicine (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, 1sth edn. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  17. Doherty LS, Kiely JL, Swan V, McNicholas WT (2005) Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome. Chest 127(6):2076–2084

    Article  PubMed  Google Scholar 

  18. Kendzerska T, Mollayeva T, Gershon AS, Leung RS, Hawker G, Tomlinson G (2014) Untreated obstructive sleep apnea and the risk for serious long-term adverse outcomes: a systematic review. Sleep Med Rev 18(1):49–59

    Article  PubMed  Google Scholar 

  19. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14:540–545

    CAS  PubMed  Google Scholar 

  20. Sabroe I, Dower SK, Whyte MK (2005) The role of TLRs in the regulation of neutrophil migration, activation, and apoptosis. Clin Infect Dis 41(Suppl 7):S421–S426

    Article  CAS  PubMed  Google Scholar 

  21. Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, Triantafilou K (2006) Membrane sorting of Toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 281:31002–31011

    Article  CAS  PubMed  Google Scholar 

  22. Francois S, El Benna J, Dang PM, Pedruzzi E, Gougerot-Pocidalo MA, Elbim C (2005) Inhibition of neutrophil apoptosis by TLR agonists in whole blood: involvement of the phosphoinositide 3-kinase/Akt and NF–kappaB signaling pathways, leading to increased levels of Mcl-1, A1, and phosphorylated Bad. J Immunol 174(6):3633–3642

    Article  CAS  PubMed  Google Scholar 

  23. Wilde I, Lotz S, Engelmann D, Starke A, van Zandbergen G, Solbach W, Laskay T (2007) Direct stimulatory effects of the TLR2/6 ligand bacterial lipopeptide MALP-2 on neutrophil granulocytes. Med Microbiol Immunol 196:61–71

    Article  CAS  PubMed  Google Scholar 

  24. Chin AC, Fournier B, Peatman EJ, Reaves TA, Lee WY, Parkos CA (2009) CD47 and TLR-2 cross-talk regulates neutrophil transmigration. J Immunol 183:5957–5963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Alves-Filho JC, Freitas A, Souto FO, Spiller F, Paula-Neto H, Silva JS, Gazzinelli RT, Teixeira MM, Ferreira SH, Cunha FQ (2009) Regulation of chemokine receptor by TLR2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci U S A 106:4018–4023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Long EM, Klimowicz AC, Paula-Neto HA, Millen B, McCafferty DM, Kubes P, Robbins SM (2011) A subclass of acylated anti-inflammatory mediators usurp TLR 2 to inhibit neutrophil recruitment through peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A 108:16357–16362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, Finberg RW (2005) Varicella-zoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol 79:12658–12666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Moon SK, Woo JI, Lee HY, Park R, Shimada J, Pan H, Gellibolian R, Lim DJ (2007) Toll-like receptor 2-dependent NF–kappaB activation is involved in nontypeable Haemophilus influenzae-induced monocyte chemotactic protein 1 up-regulation in the spiral ligament fibrocytes of the inner ear. Infect Immun 75:3361–3372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bas S, Neff L, Vuillet M, Spenato U, Seya T, Matsumoto M, Gabay C (2008) The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/1/6 and CD14. J Immunol 180:1158–1168

    Article  CAS  PubMed  Google Scholar 

  30. Kawakami A, Osaka M, Aikawa M, Uematsu S, Akira S, Libby P, Shimokado K, Sacks FM, Yoshida M (2008) Toll-like receptor 2 mediates apolipoprotein CIII-induced monocyte activation. Circ Res 103:1402–1409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Akinnusi M, Jaoude P, Kufel T, El-Solh AA (2013) Toll-like receptor activity in patients with obstructive sleep apnea. Sleep Breath 17:1009–1016

    Article  PubMed  Google Scholar 

  32. Kuwahata S, Fujita S, Orihara K, Hamasaki S, Oba R, Hirai H, Nagata K, Ishida S, Kataoka T, Oketani N, Ichiki H, Iriki Y, Saihara K, Okui H, Ninomiya Y, Tei C (2010) High expression level of Toll-like receptor 2 on monocytes is an important risk factor for arteriosclerotic disease. Atherosclerosis 209:248–254

    Article  CAS  PubMed  Google Scholar 

  33. Grote K, Sonnenschein K, Kapopara PR, Hillmer A, Grothusen C, Salguero G, Kotlarz D, Schuett H, Bavendiek U, Schieffer B (2013) Toll-like receptor 2/6 agonist macrophage-activating lipopeptide-2 promotes reendothelialization and inhibits neointima formation after vascular injury. Arterioscler Thromb Vasc Biol 33:2097–2104

    Article  CAS  PubMed  Google Scholar 

  34. Seledtsov VI, Seledtsova GV (2012) A balance between tissue-destructive and tissue-protective immunities: a role of Toll-like receptors in regulation of adaptive immunity. Immunobiology 217:430–435

    Article  CAS  PubMed  Google Scholar 

  35. Yang L, Francois F, Pei Z (2012) Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res 18:2138–2144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lim DM, Wang ML (2011) Toll-like receptor 3 signaling enables human esophageal epithelial cells to sense endogenous danger signals released by necrotic cells. Am J Physiol Gastrointest Liver Physiol 301:G91–G99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Oberg HH, Juricke M, Kabelitz D, Wesch D (2011) Regulation of T cell activation by TLR ligands. Eur J Cell Biol 90:582–592

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical support provided by the Genomic and Proteomic Core Laboratory, and Internal Medicine Core Facility of the Kaohsiung Chang Gung Memorial Hospital. The authors wish to thank Ms. Shu-Jun Kong, Ms. Lian-Rong Liu, and Mr. Wei-Zhe Liu for manual scoring of all PSG. This work was supported by grants (NMRPG8B6191 to M.C. Lin and NMRPG8A0241 to Y.C. Chen) from the National Science Council, Taiwan, and by a grant from the Chang Gung Memorial Hospital (CMRPG8A0981 to M.C. Lin), Taiwan.

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Chih Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Su, MC., Liou, CW. et al. Co-upregulation of Toll-like receptors 2 and 6 on peripheral blood cells in patients with obstructive sleep apnea. Sleep Breath 19, 873–882 (2015). https://doi.org/10.1007/s11325-014-1116-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-014-1116-4

Keywords

Navigation