Skip to main content
Log in

Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism

  • Environmental Science and Pollution Sensing, Monitoring, Modeling and Remediation
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The glutathione metabolism contains crucial antioxidant molecules to defend the organisms against oxidants. Thus, the aim of this study was to investigate the response of the glutathione metabolism in the liver of freshwater fish Oreochromis niloticus exposed to metals (Cu, Cd, Cr, Pb, Zn) in different periods. Fish were exposed to metals (as 1 μg/mL) individually for 1, 7, and 14 days and subsequently antioxidant enzymes (glutathione peroxidase, GPX; glutathione reductase, GR and glutathione S-transferase, GST) and glutathione levels (total glutathione, tGSH; reduced glutathione, rGSH; oxidized glutathione, GSSG and GSH/GSSG ratios) in the liver were measured. There was no fish mortality during the experiments, except Cu exposure. The antioxidant enzymes responded differently to metal exposures depending on metal types and exposure durations. GPX activity increased only after Cd exposure, while GST activity increased following 7 days of all metal exposures. However, GR activity did not alter in most cases. Total GSH and GSH/GSSG levels generally decreased, especially after 7 days. Data showed that metal exposures significantly altered the response of antioxidant system parameters, particularly at day 7 and some recovery occurred after 14 days. This study suggests that the response of antioxidant system could help to predict metal toxicity in the aquatic environments and be useful as an “early warning tool” in natural monitoring studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad I, Oliveira M, Pacheco M, Santos MA (2005) Anguilla anguilla L. oxidative stress biomarkers responses to copper exposure with or without β-naphthoflavone pre-exposure”. Chemosphere 61:267–275

    Article  CAS  Google Scholar 

  • Atli G, Canli M (2003) Natural occurrence of metallothionein-like proteins in the liver of fish Oreochromis niloticus and effects of cadmium, lead, copper, zinc, and ıron exposures on their profiles”. Bull Environ Contam Toxicol March 70(2003):0619–0627

    Article  CAS  Google Scholar 

  • Atli G, Canli M (2007) Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus”. Comp Biochem Physiol C 145:282–287

    Google Scholar 

  • Atli G, Canli M (2008) Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures”. Environ Toxicol Pharm 25:33–38

    Article  CAS  Google Scholar 

  • Atli G, Canli M (2010) Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures”. Ecotoxicol Environ Saf 73:1884–1889

    Article  CAS  Google Scholar 

  • Ay O, Kalay M, Tamer L, Canli M (1999) Copper and lead accumulation in tissues of a freshwater fish Tilapia zillii and ıts effects on the branchial Na, K-ATPase activity. Bull Environ Contam Toxicol 62:160–168

    Article  CAS  Google Scholar 

  • Basha PS, Rani AU (2003) Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia)”. Ecotoxicol Environ Saf 56:218–221

    Article  CAS  Google Scholar 

  • Baysoy E, Atli G, Gurler CO, Dogan Z, Eroglu A, Kocalar K, Canli M (2012) The effects of increased freshwater salinity in the biodisponibility of metals (Cr, Pb)and effects on antioxidant systems of Oreochromis niloticus”. Ecotoxicol Environ Saf 84:249–253

    Article  CAS  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione”. J Lab Clinic Med 61:882–890

    CAS  Google Scholar 

  • Carvalho CDS, Bernusso VA, de Araújo HSS, Espíndola ELG, Fernandes MN (2012) Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere 89:60–69

    Article  CAS  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver”. J Biol Chem 250:5475–5480

    CAS  Google Scholar 

  • Chandran R, Sivakumar AA, Mohandass S, Aruchami M (2005) Effect of cadmium and zinc on antioxidant enzyme activity in the gastropod, Achatina fulica”. Comp Biochem Physiology Part C 140:422–426

    Google Scholar 

  • Choi CY, An KW, An MI (2008) Molecular characterization and mRNA expression of glutathione peroxidase and glutathione S-transferase during osmotic stress in olive flounder (Paralichthys olivaceus)”. Comp Biochem Physiol A 149:330–337

    Article  Google Scholar 

  • Dautremepuits C, Betoulle S, Vernet G (2002) Antioxidant response modulated by copper in healthy or parasitized carp (Cyprinus carpio L.) by Ptychobothrium sp. (Cestoda)”. Biochimt Biophys Acta (BBA) - Gen Subj 1573:p4–p8

    Article  Google Scholar 

  • De Zoysa M, Whang I, Lee Y, Lee S, Lee JS, Lee J (2009) Transcriptional analysis of antioxidant and immune defense genes in disk abalone (Haliotis discus discus) during thermal, low-salinity and hypoxic stress”. Comp Biochem Physiol B 154:387–395

    Article  Google Scholar 

  • Downs CA, Dillon RT Jr, Fauth JE, Woodley CM (2001) A molecular biomarker system for assessing the health of gastropods (Ilyanassa obsoleta) exposed to natural and anthropogenic stressors”. J Exper Mar Biol Ecology 259:189–214

    Article  CAS  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dorr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure”. Ecotoxicol Environ Saf 55:162–167

    Article  CAS  Google Scholar 

  • Eyckmans M, Celis N, Horemans N, Blust R, De Boeck G (2011) Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species. Aquat Toxicol 103:112–120

    Article  CAS  Google Scholar 

  • Falfushynska HI, Gnatyshyna LL, Priydun CV, Stoliar OB, Nam YK (2010) Variability of responses in the crucian carp Carassius carassius from two Ukrainian ponds determined by multi-marker approach. Ecotoxicol Environ Saf 73:1896–1906

    Article  CAS  Google Scholar 

  • Falfushynska HI, Gnatyshyna LL, Priydun CV, Stoliar OB, Nam YK (2011) Various responses to copper and manganese exposure of Carassius auratus gibelio from two populations. Comp Biochem Physiol Part C Toxicol Pharm 154:242–253

    Article  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine”. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  • Gurer-Orhan H, Sabır HU, Özgüneş H (2004) Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers”. Toxicology 195:p147–p154

    Article  Google Scholar 

  • Guyonnet D, Siess MH, Le Bon AM, Suschetet M (1999) Modulation of phase II enzymes by organosulfur compounds from allium vegetables in rat tissues”. Toxicol Appl Pharmacol 154:50–58

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation”. Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Heath AG (1995) Water pollution and fish physiology”, 2nd edn. CRC press, New York

    Google Scholar 

  • Jena KB, Verlecar XN, Chainy GBN (2009) Application of oxidative stress indices in natural populations of Perna viridis as biomarker of environmental pollution”. Mar Pollut Bull 58:107–113

    Article  CAS  Google Scholar 

  • Jorgensen SW (2012) Ecotoxicology: a derivative of encyclopedia of ecology”. Academic Press, London, p 390 pp

    Google Scholar 

  • Laurén DJ, McDonald DG (1987) Acclimation to copper by rainbow trout, Salmo gairdneri”. Biochem Can J Fish Aquat Sci 44(1):105–111

    Article  Google Scholar 

  • Kretzschmar M (1996) Regulation of hepatic glutathione metabolism and its role in hepatotoxicity”. Exp Toxicol Pathol 48:439–446

    Article  CAS  Google Scholar 

  • Li X, Lin L, Luan T, Yang L, Lan C (2008) Effects of landfill leachate effluent and bisphenol A on glutathione and glutathione-related enzymes in the gills and digestive glands of the freshwater snail Bellamya purificata”. Chemosphere 70:1903–1909

    Article  CAS  Google Scholar 

  • Li ZH, Zlabek V, Velisek J, Grabic R, Machova J, Randak T (2009) Responses of antioxidant status and Na+-K+-ATPase activity in gill of rainbow trout, Oncorhynchus mykiss, chronically treated with carbamazepine”. Chemosphere 77:1476–1481

    Article  CAS  Google Scholar 

  • Livingstone DR, Lips F, Martinez PG, Pipe RK (1992) Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis”. Mar Biol 112:265–276

    Article  CAS  Google Scholar 

  • Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms”. Mar Pollut Bull 42:656–666

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farra NJ, Randall RJ (1951) Protein measurements with the folin phenol reagent”. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lushchak OV, Kubrak OI, Nykorak MZ, Storey KB, Lushchak VI (2008) The effect of potassium dichromate on free radical processes in goldfish: possible protective role of glutathione”. Aquat Toxicol 87:p108–p114

    Article  Google Scholar 

  • Mance G (1987) Pollution threat of heavy metals in aquatic environment”. Elsevier, London, p 363

    Book  Google Scholar 

  • Martınez-Alvarez R, Morales A, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors”. Rev Fish Biol Fish 15:75–88

    Article  Google Scholar 

  • Oliveira M, Maria VL, Ahmad I, Serafim A, Bebianno MJ, Pacheco M, Santos MA (2009) Contamination assessment of a coastal lagoon (Ria de Aveiro, Portugal) using defence and damage biochemical indicators in gill of Liza aurata—an integrated biomarker approach”. Environ Pollut 157:959–967

    Article  CAS  Google Scholar 

  • Peña-Llopis S, Peña JB, Sancho E, Fernández-Vega C, Ferrando MD (2001) Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate”. Chemosphere 45:p671–p681

    Article  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae”. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Radi AAR, Matkovics B (1988) Effects of metal ions on the antioxidant enzyme activities, protein content and lipid peroxidation of carp tissues”. Comp Biochem Physiol C Comp Pharmacol 90:69–72

    Article  CAS  Google Scholar 

  • Roche H, Bogé G (1996) Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication”. Mar Environ Res 41:27–43

    Article  CAS  Google Scholar 

  • Saglam D, Atli G, Canli M (2013) Investigations on the osmoregulation of freshwater fish (Oreochromis niloticus) following exposures tometals (Cd, Cu) in differing hardness”. Ecotoxicol Environ Saf 92:79–86

    Article  CAS  Google Scholar 

  • Sampaio FG, Boijink CL, Oba ET, Santos LRB, Kalinin AL, Rantin FT (2008) Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure”. Comp Biochem Physiol C 147:43–51

    Google Scholar 

  • Sevgiler Y, Piner P, Durmaz H, Uner N (2007) Effects of N-acetylcysteine on oxidative responses in the liver of fenthion exposed Cyprinus carpio”. Pestic Biochem Physiol 87:248–254

    Article  CAS  Google Scholar 

  • Sevcikova M, Modra H, Slaninova A, Svobodova Z (2011) Metals as a cause of oxidative stress in fish: a review. Vet Med 56:537–546

    CAS  Google Scholar 

  • Srikanth K, Pereira E, Duarte AC, Ahmad I (2013) Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish—a review”. Environ Sci Poll Res 20:2133–2149

    Article  CAS  Google Scholar 

  • Tan S, Sagara Y, Liu Y, Maher P, Schubert D (1988) The regulation of reactive oxygen species production during programmed cell death”. J Cell Biol 141:1423–1432

    Article  Google Scholar 

  • Torres MA, Testa CP, Gaspari C, Masutti MB, Panitz CMN, Curi-Pedrosa R, Almeida EA, Mascio PD, Filho DW (2002) “Oxidative stress in the mussel Mytella guyanensis from polluted mangroves on Santa Catarina Island, Brazil. Mar Pollut Bull 44:923–932

    Article  Google Scholar 

  • Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short-and long-term exposure to Cu2+ and Zn+2”. Chemosphere 62:538–544

    Article  CAS  Google Scholar 

  • Ueng YF, Liu C, Lai CF, Meng LM, Hung YY, Ueng TH (1996) Effects of cadmium and environmental pollution metallothionein and cytochrome P450 in tilapia”. Bull Environ Contam Toxicol 57:125–131

    Article  CAS  Google Scholar 

  • Wood CM, Farrel AP, Brauner CJ (2012) Homeostasis and toxicology of essential metals. Fish Physiol Vol. 31A. Academic Press, London, p 497

    Google Scholar 

  • Velma V, Tchounwou PB (2010) Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish Carassius auratus. Mutat Res 698:43–51

    Article  CAS  Google Scholar 

  • Zhang JF, Wang XR, Guo HY, Wu JC, Xue YQ (2004) Effects of water-soluble fractions of diesel oil on the antioxidant defenses of the goldfish, Carassius auratus”. Ecotoxicol Environ Saf 58:110––116

    Article  Google Scholar 

  • Zikic R, Stajn A, Saicic Z, Spasic M, Ziemnicki K, Petrovic V (1996) The activities of superoxid dismutase, catalase and ascorbic acid content in the liver of goldfish (Carassius auratus gibelio Bloch.) exposed to cadmium”. Physiol Res 45:479–481

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant FEF 2010BAP14 from Çukurova University (Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Canli.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroglu, A., Dogan, Z., Kanak, E.G. et al. Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism. Environ Sci Pollut Res 22, 3229–3237 (2015). https://doi.org/10.1007/s11356-014-2972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2972-y

Keywords

Navigation