Skip to main content
Log in

Effects of aging and sex on voluntary activation and peak relaxation rate of human elbow flexors studied with motor cortical stimulation

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Data are equivocal on whether voluntary activation is preserved or decreased in old compared to young adults. Further, data are scant on the effect of age on the rate of muscle relaxation when the muscle is contracting voluntarily. Assessment of both measures with transcranial magnetic stimulation (TMS) yields information which cannot be obtained with traditional peripheral nerve stimulation. Hence, voluntary activation and peak relaxation rate of the elbow flexors were assessed with TMS during repeated maximal efforts in 30 men and 28 women between the ages of 22–84 years. Voluntary activation was similar for the two sexes (P = 0.154) and was not affected by age in men (96.2 ± 2.7 %; P = 0.887) or women (95.1 ± 3.0 %; P = 0.546). Men had a significantly faster peak rate of relaxation than women in absolute units (−880.0 ± 223.2 vs. −360.2 ± 78.5 Nm/ s, respectively; P < 0.001) and when normalized to subject strength (−12.5 ± 2.1 vs. −8.7 ± 1.0 s−1, respectively; P < 0.001). Absolute and normalized relaxation rates slowed with age in men (P = 0.002 and P = 0.006, respectively), but not women (P = 0.142 and P = 0.950, respectively). Across the age range studied, all subjects, regardless of age or sex, were able to achieve high voluntary activation scores for the elbow flexors (~95 %). In contrast, peak relaxation rate was markedly faster in men than women and slowed with age in men but not women. Normalization of relaxation rates to strength did not affect the influence of age or sex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allman BL, Rice CL (2001) Incomplete recovery of voluntary isometric force after fatigue is not affected by old age. Muscle Nerve 24:1156–1167. doi:10.1002/mus.1127

    Article  PubMed  CAS  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107, doi:S0140-6736(85)92413-4

    Article  PubMed  CAS  Google Scholar 

  • Belanger AY, McComas AJ (1981) Extent of motor unit activation during effort. J Appl Physiol 51:1131–1135

    PubMed  CAS  Google Scholar 

  • Bilodeau M, Erb MD, Nichols JM, Joiner KL, Weeks JB (2001) Fatigue of elbow flexor muscles in younger and older adults. Muscle Nerve 24:98–106. doi:10.1002/1097-4598(200101)24:1<98::AID-MUS11>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  • Dalton BH, Jakobi JM, Allman BL, Rice CL (2010) Differential age-related changes in motor unit properties between elbow flexors and extensors. Acta Physiol (Oxf) 200:45–55. doi:10.1111/j.1748-1716.2010.02100.x

    CAS  Google Scholar 

  • Day BL, Rothwell JC, Thompson PD, Maertens de Noordhout A, Nakashima K, Shannon K, Marsden CD (1989) Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man. Evidence for the storage of motor programs in the brain. Brain 112:649–663

    Article  PubMed  Google Scholar 

  • De Serres SJ, Enoka RM (1998) Older adults can maximally activate the biceps brachii muscle by voluntary command. J Appl Physiol 84:284–291

    Article  PubMed  Google Scholar 

  • Department of Health UK (2009) The General Practice Physical Activity Questionnaire (GPPAQ). National Health Service, London

    Google Scholar 

  • Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95:1717–1727. doi:10.1152/japplphysiol.00347.2003

    PubMed  CAS  Google Scholar 

  • Doherty TJ, Vandervoort AA, Taylor AW, Brown WF (1993) Effects of motor unit losses on strength in older men and women. J Appl Physiol 74:868–874

    Article  PubMed  CAS  Google Scholar 

  • Edstrom L, Nystrom B (1969) Histochemical types and sizes of fibres in normal human muscles. A biopsy study. Acta Neurol Scand 45:257–269

    Article  PubMed  CAS  Google Scholar 

  • Fitts RH, Troup JP, Witzmann FA, Holloszy JO (1984) The effect of ageing and exercise on skeletal muscle function. Mech Ageing Dev 27:161–172, doi:0047-6374(84)90041-1

    Article  PubMed  CAS  Google Scholar 

  • Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    PubMed  CAS  Google Scholar 

  • Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 490:529–536

    PubMed  CAS  Google Scholar 

  • Henneman E (1980) Skeletal muscle. In: Mountcastle VB (ed) Medical physiology, 14th edn. Mosby, St. Louis, pp 674–702

    Google Scholar 

  • Herbert RD, Gandevia SC (1999) Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation. J Neurophysiol 82:2271–2283

    PubMed  CAS  Google Scholar 

  • Hunter SK, Butler JE, Todd G, Gandevia SC, Taylor JL (2006) Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. J Appl Physiol 101:1036–1044. doi:10.1152/japplphysiol.00103.2006

    Article  PubMed  Google Scholar 

  • Hunter SK, Thompson MW, Ruell PA, Harmer AR, Thom JM, Gwinn TH, Adams RD (1999) Human skeletal sarcoplasmic reticulum Ca2+ uptake and muscle function with aging and strength training. J Appl Physiol 86:1858–1865

    PubMed  CAS  Google Scholar 

  • Hunter SK, Todd G, Butler JE, Gandevia SC, Taylor JL (2008) Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions. J Appl Physiol 105:1199–1209. doi:10.1152/japplphysiol.01246.2007

    Article  PubMed  Google Scholar 

  • Jakobi JM, Rice CL (2002) Voluntary muscle activation varies with age and muscle group. J Appl Physiol 93:457–462. doi:10.1152/japplphysiol.00012.2002

    PubMed  Google Scholar 

  • Jennekens FG, Tomlinson BE, Walton JN (1971) The sizes of the two main histochemical fibre types in five limb muscles in man. An autopsy study. J Neurol Sci 13:281–292

    Article  PubMed  CAS  Google Scholar 

  • Kallman DA, Plato CC, Tobin JD (1990) The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. J Gerontol 45:M82–M88

    Article  PubMed  CAS  Google Scholar 

  • Klass M, Baudry S, Duchateau J (2007) Voluntary activation during maximal contraction with advancing age: a brief review. Eur J Appl Physiol 100:543–551. doi:10.1007/s00421-006-0205-x

    Article  PubMed  Google Scholar 

  • Klein CS, Marsh GD, Petrella RJ, Rice CL (2003) Muscle fiber number in the biceps brachii muscle of young and old men. Muscle Nerve 28:62–68. doi:10.1002/mus.10386

    Article  PubMed  Google Scholar 

  • Klein CS, Rice CL, Marsh GD (2001) Normalized force, activation, and coactivation in the arm muscles of young and old men. J Appl Physiol 91:1341–1349

    PubMed  CAS  Google Scholar 

  • Kleine BU, Stegeman DF (2007) Stimulating motor wisdom. J Appl Physiol 102:1737–1738. doi:10.1152/japplphysiol.00113.2007

    Article  PubMed  Google Scholar 

  • Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B (1990a) Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140:41–54

    Article  PubMed  CAS  Google Scholar 

  • Klitgaard H, Zhou M, Schiaffino S, Betto R, Salviati G, Saltin B (1990b) Ageing alters the myosin heavy chain composition of single fibres from human skeletal muscle. Acta Physiol Scand 140:55–62

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Gandevia SC, Carroll TJ (2008) Cortical voluntary activation can be reliably measured in human wrist extensors using transcranial magnetic stimulation. Clin Neurophysiol 119:1130–1138. doi:10.1016/j.clinph.2007.12.018

    Article  PubMed  Google Scholar 

  • Mattiello-Sverzut AC, Chimelli L, Moura MS, Teixeira S, de Oliveira JA (2003) The effects of aging on biceps brachii muscle fibers: a morphometrical study from biopsies and autopsies. Arq Neuropsiquiatr 61:555–560. doi:10.1590/S0004-282X2003000400006

    Article  PubMed  Google Scholar 

  • McNeil CJ, Vandervoort AA, Rice CL (2007) Peripheral impairments cause a progressive age-related loss of strength and velocity-dependent power in the dorsiflexors. J Appl Physiol 102:1962–1968. doi:10.1152/japplphysiol.01166.2006

    Article  PubMed  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    PubMed  CAS  Google Scholar 

  • Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG (1993) Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 66:254–262

    Article  PubMed  CAS  Google Scholar 

  • Monemi M, Eriksson PO, Eriksson A, Thornell LE (1998) Adverse changes in fibre type composition of the human masseter versus biceps brachii muscle during aging. J Neurol Sci 154:35–48. doi:10.1016/S0022-510X(97)00208-6

    Article  PubMed  CAS  Google Scholar 

  • Monemi M, Eriksson PO, Kadi F, Butler-Browne GS, Thornell LE (1999) Opposite changes in myosin heavy chain composition of human masseter and biceps brachii muscles during aging. J Muscle Res Cell Motil 20:351–361

    Article  PubMed  CAS  Google Scholar 

  • Nygaard E, Houston M, Suzuki Y, Jorgensen K, Saltin B (1983) Morphology of the brachial biceps muscle and elbow flexion in man. Acta Physiol Scand 117:287–292

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Sidhu SK, Bentley DJ, Carroll TJ (2009) Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. J Appl Physiol 106:556–565. doi:10.1152/japplphysiol.90911.2008

    Article  PubMed  Google Scholar 

  • Simunic B, Degens H, Rittweger J, Narici M, Mekjavic IB, Pisot R (2011) Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med Sci Sports Exerc 43:1619–1625. doi:10.1249/MSS.0b013e31821522d0

    Article  PubMed  CAS  Google Scholar 

  • Taylor JL, Allen GM, Butler JE, Gandevia SC (2000) Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. J Appl Physiol 89:305–313

    PubMed  CAS  Google Scholar 

  • Taylor JL, Gandevia SC (2001) Transcranial magnetic stimulation and human muscle fatigue. Muscle Nerve 24:18–29. doi:10.1002/1097-4598(200101)24:1<18::AID-MUS2>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  • Todd G, Butler JE, Taylor JL, Gandevia SC (2005) Hyperthermia: a failure of the motor cortex and the muscle. J Physiol 563:621–631. doi:10.1113/jphysiol.2004.077115

    Article  PubMed  CAS  Google Scholar 

  • Todd G, Taylor JL, Butler JE, Martin PG, Gorman RB, Gandevia SC (2007) Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles. J Appl Physiol 102:1756–1766. doi:10.1152/japplphysiol.00962.2006

    Article  PubMed  Google Scholar 

  • Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 551:661–671. doi:10.1113/jphysiol.2003.044099

    Article  PubMed  CAS  Google Scholar 

  • Todd G, Taylor JL, Gandevia SC (2004) Reproducible measurement of voluntary activation of human elbow flexors with motor cortical stimulation. J Appl Physiol 97:236–242. doi:10.1152/japplphysiol.01336.2003

    Article  PubMed  Google Scholar 

  • van Duinen H, Gandevia SC, Taylor JL (2010) Voluntary activation of the different compartments of the flexor digitorum profundus. J Neurophysiol 104:3213–3221. doi:10.1152/jn.00470.2010

    Article  PubMed  Google Scholar 

  • Vandervoort AA, McComas AJ (1986) Contractile changes in opposing muscles of the human ankle joint with aging. J Appl Physiol 61:361–367

    PubMed  CAS  Google Scholar 

  • Yoon T, De-Lap BS, Griffith EE, Hunter SK (2008) Age-related muscle fatigue after a low-force fatiguing contraction is explained by central fatigue. Muscle Nerve 37:457–466. doi:10.1002/mus.20969

    Article  PubMed  Google Scholar 

  • Yue GH, Ranganathan VK, Siemionow V, Liu JZ, Sahgal V (1999) Older adults exhibit a reduced ability to fully activate their biceps brachii muscle. J Gerontol A Biol Sci Med Sci 54:M249–M253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Janet Taylor for helpful comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon C. Gandevia.

About this article

Cite this article

Molenaar, J.P., McNeil, C.J., Bredius, M.S. et al. Effects of aging and sex on voluntary activation and peak relaxation rate of human elbow flexors studied with motor cortical stimulation. AGE 35, 1327–1337 (2013). https://doi.org/10.1007/s11357-012-9435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9435-5

Keywords

Navigation