Skip to main content
Log in

Effects of taxifolin on the activity of angiotensin-converting enzyme and reactive oxygen and nitrogen species in the aorta of aging rats and rats treated with the nitric oxide synthase inhibitor and dexamethasone

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The action of taxifolin on the angiotensin-converting enzyme (ACE) and the formation of reactive oxygen and nitrogen species (ROS/RNS) in the aorta of aging rats and rats treated with nitric oxide synthase inhibitor (N ω-nitro-l-arginine methyl ester (L-NAME)) or dexamethasone have been studied. The ACE activity in aorta sections was determined by measuring the hydrolysis of hippuryl-l-histidyl-l-leucine, and the ROS/RNS production was measured by oxidation of dichlorodihydrofluorescein. It was shown that taxifolin at a dose of 30–100 μg/kg/day decreases the ACE activity in the aorta of aging rats and of rats treated with L-NAME or dexamethasone to the level of the ACE activity in young control rats. Taxifolin (100 μg/kg/day) was found to also reduce the amount of ROS/RNS in the aorta that increased as a result of L-NAME intake. L-NAME treatment increases the contribution of 5-lipoxygenase and NADPH oxidase to ROS/RNS production in the aorta, while taxifolin (100 μg/kg/day) decreases the contribution of these enzymes to the normal level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackermann A, Fernandez-Alfonso MS, Sanchez-de-Rojas R, Ortega T, Paul M, Gonzales C (1998) Modulation of angiotensin-converting enzyme by nitric oxide. Br J Pharmacol 124:291–298

    Article  PubMed  CAS  Google Scholar 

  • Actis-Gorettaa L, Ottaviania JI, Keenb CL, Fragaa CG (2003) Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins. FEBS Lett 555:597–600

    Article  Google Scholar 

  • Actis-Gorettaa L, Ottaviania JI, Fragaa CG (2006) Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J Agricult Food Chem 54:229–234

    Article  Google Scholar 

  • Basso N, Cini R, Pietrelli A, Ferder L, Terragno NA, Inserra F (2007) Protective effect of long-term angiotensin II inhibition. Am J Physiol Heart Circ Physiol 293:H1351–H1358

    Article  PubMed  CAS  Google Scholar 

  • Braga FC, Serra CP, Viana Junior NS, Oliveira AB, Cortes SF, Lombardi JA (2007) Angiotensin-converting enzyme inhibition by Brazilian plants. Fitoterapia 78:353–358

    Article  PubMed  Google Scholar 

  • Choi H, Leto TL, Hunyady L, Catt KJ, Bae YS, Rhee SG (2008) Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase. J Biol Chem 283:255–267

    Article  PubMed  CAS  Google Scholar 

  • Deschamps JD, Kenyon VA, Holman TR (2006) Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases. Bioorg Med Chem 14:4295–4301

    Article  PubMed  CAS  Google Scholar 

  • Duarte J, Perez-Palencia R, Vargas F, Ocete MA, Perez-Vizcaino F, Zarzuelo A, Tamargo J (2001) Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats. Br J Pharmacol 133:117–124

    Article  PubMed  CAS  Google Scholar 

  • Dzau VJ (2001) Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 37:1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Emel’yanov MO, Korystova AF, Kublik LN, Levitman MK, Shaposhnikova VV, Korystov YN (2012) Low doses of ethanol decrease the activity of the angiotensin-converting enzyme in the aorta of aging rats and rats treated with a nitric oxide synthase inhibitor and dexamethasone. Clin Sci 122:75–81

    Article  PubMed  Google Scholar 

  • Galisteo M, Garcia-Saura MF, Jimenez R, Villar IC, Zarzuelo A, Vargas F, Duarte J (2004) Effects of chronic quercetin treatment on antioxidant defence system and oxidative status of deoxycorticosterone acetate-salt-hypertensive rats. Mol Cell Biochem 259:91–99

    Article  PubMed  CAS  Google Scholar 

  • Grassi D, Desideri G, Ferri C (2010) Flavonoids: antioxidants against atherosclerosis. Nutrients 2:889–902

    Article  PubMed  CAS  Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    Article  PubMed  CAS  Google Scholar 

  • Hamberg M (1976) On the formation of thromboxane B2 and 12L-hydroxy-5, 8,10,14-eicosatetraenoic acid (12 ho-20:4) in tissues from the guinea pig. Biochim Biophys Acta 431:651–654

    Article  PubMed  CAS  Google Scholar 

  • Hansen K, Adsersen A, Smitt UW, Nyman U, Christensen SB, Schwartner C, Wagner H (1996) Angiotensin converting enzyme (ACE) inhibitory flavonoids from Erythroxylum laurifolium. Phytomedicine 2:313–317

    Article  PubMed  CAS  Google Scholar 

  • Hayek T, Fuhrman B, Vaya J, Rosenblat M, Belinky P, Coleman R, Elis A, Aviram M (1997) Reduced progression of atherosclerosis in apolipoprotein E-deficient mice after consumption of red wine, or its polyphenols quercetin or catechin, is associated with reduced susceptibility of LDL to oxidation and aggregation. Arterioscler Thromb Vasc Biol 17:2744–2752

    Article  PubMed  CAS  Google Scholar 

  • Heeneman S, Sluimer JC, Daemen M (2007) Angiotensin-converting enzyme and vascular remodeling. Circ Res 101:441–454

    Article  PubMed  CAS  Google Scholar 

  • Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342:1007–1111

    Article  PubMed  CAS  Google Scholar 

  • Hishikawa K, Nakaki T, Fujita T (2005) Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25:442–446

    Article  PubMed  CAS  Google Scholar 

  • Kameda K, Takaku T, Okuda H, Rimura Y (1987) Inhibitory effects of various flavonoids isolated from leaves of persimmon on angiotensin-converting enzyme activity. J Nat Prod 50:680–683

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Hou J, Chobanian AV, Brecher P (1996) Effects of angiotensin II infusion and inhibition of nitric oxide synthase on the rat aorta. Hypertension 28:153–158

    Article  PubMed  CAS  Google Scholar 

  • Katoh M, Egashira K, Kataoka C, Usui M, Koyanagi M, Kitamoto S, Ohmachi Y, Takeshita A, Narita H (2001) Regression by ACE inhibition of arteriosclerotic changes induced by chronic blockade of NO synthesis in rats. Am J Physiol Heart Circ Physiol 280:H2306–H2312

    PubMed  CAS  Google Scholar 

  • Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52:11–34

    PubMed  CAS  Google Scholar 

  • Kitts DD, Yuan YV, Godin DV (1998) Plasma and lipoprotein lipid composition and hepatic antioxidant status in spontaneously hypertensive (SHR) and normotensive (WKY) rats. Can J Physiol Pharmacol 76:202–209

    Article  PubMed  CAS  Google Scholar 

  • Korystov YN, Emel’yanov MO, Korystova AF, Levitman MK, Shaposhnikova VV (2009) Determination of reactive oxygen and nitrogen species in rat aorta using the dichlorofluorescein assay. Free Radic Res 43:149–155

    Article  PubMed  CAS  Google Scholar 

  • Korystova AF, Emel’yanov MO, Kublik LN, Levitman MK, Shaposhnikova VV, Kim YA, Korystov YN (2012) Distribution of the activity of the angiotensin-converting enzyme in the rat aorta and changes in the activity with aging and by the action of L-NAME. Age 34:821–830

    Article  PubMed  CAS  Google Scholar 

  • Koshihara Y, Neichi T, Murota S, Lao A, Fujimoto Y, Tatsuno T (1984) Caffeic acid is a selective inhibitor for leukotriene biosynthesis. Biochim Biophys Acta 792:92–97

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Egashira K, Kubo-Inoue M, Usui M, Kitamoto S, Tomita H, Shimokawa H, Takeshita A (2000) Role of transforming growth factor-1 in cardiovascular inflammatory changes induced by chronic inhibition of nitric oxide synthesis. Hypertension 35:86–90

    Article  PubMed  CAS  Google Scholar 

  • Lacaille-Dubois MA, Franck U, Wagner H (2001) Search for potential angiotensin converting enzyme (ACE)-inhibitors from plants. Phytomedicine 8:47–52

    Article  PubMed  CAS  Google Scholar 

  • Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47phox in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515

    Article  PubMed  CAS  Google Scholar 

  • Linz W, Wohlfarta P, Scholkensa BA, Malinskib T, Wiemer G (1999) Interactions among ACE, kinins and NO. Cardiovasc Res 43:549–561

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Homan LL, Dillon JS (2004) Genistein acutely stimulates nitric oxide synthesis in vascular endothelial cells by a cyclic adenosine 3′,5′-monophosphate-dependent mechanism. Endocrinology 145:5532–5539

    Article  PubMed  CAS  Google Scholar 

  • Loizzo MR, Said A, Tundis R, Rashed K, Statti GA, Hufner A, Menichini F (2007) Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytother Res 21:32–36

    Article  PubMed  CAS  Google Scholar 

  • Luchtefeld M, Drexler H, Schieffer B (2003) 5-Lipoxygenase is involved in the angiotensin II-induced NAD(P)H oxidase activation. Biochem Biophys Res Commun 308:668–672

    Article  PubMed  CAS  Google Scholar 

  • Maron DJ (2004) Flavonoids for reduction of atherosclerotic risk. Curr Atheroscler Rep 6:73–78

    Article  PubMed  Google Scholar 

  • Mehrabian M, Allayee H (2003) 5-Lipoxygenase and atherosclerosis. Cur Opin Lipidol 14:447–457

    Article  CAS  Google Scholar 

  • Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97

    Article  PubMed  CAS  Google Scholar 

  • Meunier M-T, Villié F, Jonadet M, Bastide J, Bastide P (1987) Inhibition of angiotensin I converting enzyme by flavanolic compounds: in vitro and in vivo studies. Planta Med 53:12–15

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto A, Murata S, Nishio A (2002) Role of ACE and NEP in bradykinin-induced relaxation and contraction response of isolated porcine basilar artery. Naunyn-Schmiedeberg’s Arch Pharmacol 365:365–370

    Article  CAS  Google Scholar 

  • Morrow JD, Roberts LJ (1996) The isoprostanes. Current knowledge and directions for future research. Biochem Pharmacol 51:1–9

    Article  PubMed  CAS  Google Scholar 

  • Munzel T, Keaney JF (2001) Are ACE inhibitors a “magic bullet” against oxidative stress? Circulation 104:1571–1574

    Article  PubMed  CAS  Google Scholar 

  • Nandave M, Ojha SK, Arya DS (2005) Protective role of flavonoids in cardiovascular diseases. Nat Prod Radiance 4:166–176

    Google Scholar 

  • Nashel DJ (1986) Is atherosclerosis a complication of long-term corticosteroid treatment. Am J Med 80:925–929

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    Article  PubMed  CAS  Google Scholar 

  • Reed J (2002) Cranberry flavonoids, atherosclerosis and cardiovascular health. Crit Rev Food Sci Nutr 42:301–316

    Article  PubMed  CAS  Google Scholar 

  • Sampson L, Rimm E, Hollman PC, de Vries JH, Katan MB (2002) Flavonol and flavone intakes in US health professionals. J Am Diet Assoc 102:1414–1420

    Article  PubMed  Google Scholar 

  • Saruta T (1996) Mechanism of glucocorticoid-induced hypertension. Hypertens Res 19:1–8

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN (1997) Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell–cell interactions or a therapeutic opportunity. Prostaglandins 53:107–137

    PubMed  CAS  Google Scholar 

  • Souverein PC, Berard A, Van Staa TP, Cooper C, Egberts ACG, Leufkens HGM, Walker BR (2004) Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case–control study. Heart 90:859–865

    Article  PubMed  CAS  Google Scholar 

  • Takemoto M, Egashira K, Usui M, Numaguchi K, Tomita H, Tsutsui H, Shimokawa H, Sueishi K, Takeshita A (1997) Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats. J Clin Invest 99:278–287

    Article  PubMed  CAS  Google Scholar 

  • Xu Y-Y, Yang C, Li S-N (2006) Effects of genistein on angiotensin-converting enzyme in rats. Life Sci 24:828–837

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri N. Korystov.

About this article

Cite this article

Arutyunyan, T.V., Korystova, A.F., Kublik, L.N. et al. Effects of taxifolin on the activity of angiotensin-converting enzyme and reactive oxygen and nitrogen species in the aorta of aging rats and rats treated with the nitric oxide synthase inhibitor and dexamethasone. AGE 35, 2089–2097 (2013). https://doi.org/10.1007/s11357-012-9497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9497-4

Keywords

Navigation