Skip to main content

Advertisement

Log in

Connective tissue growth factor (CTGF) in age-related vascular pathologies

  • Review Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Connective tissue growth factor (CTGF, also known as CCN2) is a matricellular protein expressed in the vascular wall, which regulates diverse cellular functions including cell adhesion, matrix production, structural remodeling, angiogenesis, and cell proliferation and differentiation. CTGF is principally regulated at the level of transcription and is induced by mechanical stresses and a number of cytokines and growth factors, including TGFβ. In this mini-review, the role of age-related dysregulation of CTGF signaling and its role in a range of macro- and microvascular pathologies, including pathogenesis of aorta aneurysms, atherogenesis, and diabetic retinopathy, are discussed. A potential role of CTGF and TGFβ in regulation and non-cell autonomous propagation of cellular senescence is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiello AE, Chiu YL, Frasca D (2017) How does cytomegalovirus factor into diseases of aging and vaccine responses, and by what mechanisms? Geroscience 39:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashpole NM, Herron JC, Mitschelen MC, Farley JA, Logan S, Yan H, Ungvari Z, Hodges EL, Csiszar A, Ikeno Y, Humphrey MB, Sonntag WE (2015) IGF-1 regulates vertebral bone aging through sex-specific and time-dependent mechanisms. J Bone Miner Res

  • Ashpole NM, Logan S, Yabluchanskiy A, Mitschelen MC, Yan H, Farley JA, Hodges EL, Ungvari Z, Csiszar A, Chen S, Georgescu C, Hubbard GB, Ikeno Y, Sonntag WE (2017) IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience

  • Bailey-Downs LC, Mitschelen M, Sosnowska D, Toth P, Pinto JT, Ballabh P, Valcarcel-Ares MN, Farley J, Koller A, Henthorn JC, Bass C, Sonntag WE, Ungvari Z, Csiszar A (2012) Liver-specific knockdown of IGF-1 decreases vascular oxidative stress resistance by impairing the Nrf2-dependent antioxidant response: a novel model of vascular aging. J Gerontol Biol Med Sci 67:313–329

    Article  Google Scholar 

  • Beaufort N, Scharrer E, Kremmer E, Lux V, Ehrmann M, Huber R, Houlden H, Werring D, Haffner C, Dichgans M (2014) Cerebral small vessel disease-related protease HtrA1 processes latent TGF-beta binding protein 1 and facilitates TGF-beta signaling. Proc Natl Acad Sci U S A 111:16496–16501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennis MT, Schneider A, Victoria B, Do A, Wiesenborn DS, Spinel L, Gesing A, Kopchick JJ, Siddiqi SA, Masternak MM (2017) The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling. Geroscience 39:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradham DM, Igarashi A, Potter RL, Grotendorst GR (1991) Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 114:1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Branchetti E, Poggio P, Sainger R, Shang E, Grau JB, Jackson BM, Lai EK, Parmacek MS, Gorman RC, Gorman JH, Bavaria JE, Ferrari G (2013) Oxidative stress modulates vascular smooth muscle cell phenotype via CTGF in thoracic aortic aneurysm. Cardiovasc Res 100:316–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigstock DR (2002) Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5:153–165

    Article  CAS  PubMed  Google Scholar 

  • Chiao YA, Ramirez TA, Zamilpa R, Okoronkwo SM, Dai Q, Zhang J, Jin YF, Lindsey ML (2012) Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovasc Res 96:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicha I, Yilmaz A, Klein M, Raithel D, Brigstock DR, Daniel WG, Goppelt-Struebe M, Garlichs CD (2005) Connective tissue growth factor is overexpressed in complicated atherosclerotic plaques and induces mononuclear cell chemotaxis in vitro. Arterioscler Thromb Vasc Biol 25:1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Cicha I, Yilmaz A, Suzuki Y, Maeda N, Daniel WG, Goppelt-Struebe M, Garlichs CD (2006) Connective tissue growth factor is released from platelets under high shear stress and is differentially expressed in endothelium along atherosclerotic plaques. Clin Hemorheol Microcirc 35:203–206

    CAS  PubMed  Google Scholar 

  • Csiszar A, Gautam T, Sosnowska D, Tarantini S, Banki E, Tucsek Z, Toth P, Losonczy G, Koller A, Reglodi D, Giles CB, Wren JD, Sonntag WE, Ungvari Z (2014) Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. Am J Physiol Heart Circ Physiol 307:H292–H306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de las Heras N, Ruiz-Ortega M, Miana M, Ruperez M, Sanz-Rosa D, Aragoncillo P, Mezzano S, Cachofeiro V, Egido J, Lahera V (2007) Interactions between aldosterone and connective tissue growth factor in vascular and renal damage in spontaneously hypertensive rats. J Hypertens 25:629–638

    Article  PubMed  Google Scholar 

  • de las Heras N, Ruiz-Ortega M, Ruperez M, Sanz-Rosa D, Miana M, Aragoncillo P, Mezzano S, Lahera V, Egido J, Cachofeiro V (2006) Role of connective tissue growth factor in vascular and renal damage associated with hypertension in rats. Interactions with angiotensin II. J Renin Angiotensin Aldosterone Syst 7:192–200

    Article  PubMed  Google Scholar 

  • Elmarakby AA, Sullivan JC (2012) Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 30:49–59

    Article  CAS  PubMed  Google Scholar 

  • Fan WH, Pech M, Karnovsky MJ (2000) Connective tissue growth factor (CTGF) stimulates vascular smooth muscle cell growth and migration in vitro. Eur J Cell Biol 79:915–923

    Article  CAS  PubMed  Google Scholar 

  • Fleenor BS, Marshall KD, Durrant JR, Lesniewski LA, Seals DR (2010) Arterial stiffening with ageing is associated with transforming growth factor-beta1-related changes in adventitial collagen: reversal by aerobic exercise. J Physiol 588:3971–3982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Game BA, He L, Jarido V, Nareika A, Jaffa AA, Lopes-Virella MF, Huang Y (2007) Pioglitazone inhibits connective tissue growth factor expression in advanced atherosclerotic plaques in low-density lipoprotein receptor-deficient mice. Atherosclerosis 192:85–91

    Article  CAS  PubMed  Google Scholar 

  • Gao DF, Niu XL, Hao GH, Peng N, Wei J, Ning N, Wang NP (2007) Rosiglitazone inhibits angiotensin II-induced CTGF expression in vascular smooth muscle cells-role of PPAR-gamma in vascular fibrosis. Biochem Pharmacol 73:185–197

    Article  CAS  PubMed  Google Scholar 

  • Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, Ikeda M, Shiota H, Tamura M, Shimoe Y, Hirayama M, Arisato T, Yanagawa S, Tanaka A, Nakano I, Ikeda S, Yoshida Y, Yamamoto T, Ikeuchi T, Kuwano R, Nishizawa M, Tsuji S, Onodera O (2009) Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 360:1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Hinton DR, Spee C, He S, Weitz S, Usinger W, LaBree L, Oliver N, Lim JI (2004) Accumulation of NH2-terminal fragment of connective tissue growth factor in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Care 27:758–764

    Article  CAS  PubMed  Google Scholar 

  • Hishikawa K, Oemar BS, Tanner FC, Nakaki T, Fujii T, Luscher TF (1999) Overexpression of connective tissue growth factor gene induces apoptosis in human aortic smooth muscle cells. Circulation 100:2108–2112

    Article  CAS  PubMed  Google Scholar 

  • Inkinen K, Soots A, Krogerus L, Lindroos P, Bruggeman C, Ahonen J, Lautenschlager I (2001) Cytomegalovirus infection enhances connective tissue growth factor mRNA expression in a rat model of chronic renal allograft rejection. Transplant Proc 33:379

    Article  CAS  PubMed  Google Scholar 

  • Inoki I, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino K, Ikeda E, Takata S, Kobayashi K, Okada Y (2002) Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 16:219–221

    CAS  PubMed  Google Scholar 

  • Jackson SE, Redeker A, Arens R, van Baarle D, van den Berg SPH, Benedict CA, Cicin-Sain L, Hill AB, Wills MR (2017) CMV immune evasion and manipulation of the immune system with aging. Geroscience 39:273–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun JI, Lau LF (2017) CCN2 induces cellular senescence in fibroblasts. J Cell Commun Signal 11:15–23

    Article  PubMed  Google Scholar 

  • Kim KH, Park GT, Lim YB, Rue SW, Jung JC, Sonn JK, Bae YS, Park JW, Lee YS (2004) Expression of connective tissue growth factor, a biomarker in senescence of human diploid fibroblasts, is up-regulated by a transforming growth factor-beta-mediated signaling pathway. Biochem Biophys Res Commun 318:819–825

    Article  CAS  PubMed  Google Scholar 

  • Klaassen I, van Geest RJ, Kuiper EJ, van Noorden CJ, Schlingemann RO (2015) The role of CTGF in diabetic retinopathy. Exp Eye Res 133:37–48

    Article  CAS  PubMed  Google Scholar 

  • Lee MS, Ghim J, Kim SJ, Yun YS, Yoo SA, Suh PG, Kim WU, Ryu SH (2015) Functional interaction between CTGF and FPRL1 regulates VEGF-A-induced angiogenesis. Cell Signal 27:1439–1448

    Article  CAS  PubMed  Google Scholar 

  • Leng SX, Kamil J, Purdy JG, Lemmermann NA, Reddehase MJ, Goodrum FD (2017) Recent advances in CMV tropism, latency, and diagnosis during aging. Geroscience 39:251–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda S, Nakayama H, Isaka K, Aihara Y, Nemoto S (1976) Familial unusual encephalopathy of Binswanger’s type without hypertension. Folia Psychiatr Neurol Jpn 30:165–177

    CAS  PubMed  Google Scholar 

  • Martinez-Martinez E, Miana M, Jurado-Lopez R, Bartolome MV, Souza Neto FV, Salaices M, Lopez-Andres N, Cachofeiro V (2014) The potential role of leptin in the vascular remodeling associated with obesity. Int J Obes 38:1565–1572

    Article  CAS  Google Scholar 

  • Martinez-Martinez E, Rodriguez C, Galan M, Miana M, Jurado-Lopez R, Bartolome MV, Luaces M, Islas F, Martinez-Gonzalez J, Lopez-Andres N, Cachofeiro V (2016) The lysyl oxidase inhibitor (beta-aminopropionitrile) reduces leptin profibrotic effects and ameliorates cardiovascular remodeling in diet-induced obesity in rats. J Mol Cell Cardiol 92:96–104

    Article  CAS  PubMed  Google Scholar 

  • Meng YH, Tian C, Liu L, Wang L, Chang Q (2014) Elevated expression of connective tissue growth factor, osteopontin and increased collagen content in human ascending thoracic aortic aneurysms. Vascular 22:20–27

    Article  CAS  PubMed  Google Scholar 

  • Meschiari CA, Ero OK, Pan H, Finkel T, Lindsey ML (2017) The impact of aging on cardiac extracellular matrix. Geroscience 39:7–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitschelen M, Yan H, Farley JA, Warrington JP, Han S, Herenu CB, Csiszar A, Ungvari Z, Bailey-Downs LC, Bass CE, Sonntag WE (2011) Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: a potential model of geriatric depression. Neuroscience 185:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muratoglu SC, Belgrave S, Hampton B, Migliorini M, Coksaygan T, Chen L, Mikhailenko I, Strickland DK (2013) LRP1 protects the vasculature by regulating levels of connective tissue growth factor and HtrA1. Arterioscler Thromb Vasc Biol 33:2137–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolich-Zugich J, van Lier RAW (2017) Cytomegalovirus (CMV) research in immune senescence comes of age: overview of the 6th International Workshop on CMV and Immunosenescence. Geroscience 39:245–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Oemar BS, Werner A, Garnier JM, Do DD, Godoy N, Nauck M, Marz W, Rupp J, Pech M, Luscher TF (1997) Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation 95:831–839

    Article  CAS  PubMed  Google Scholar 

  • Podlutsky A, Valcarcel-Ares MN, Yancey K, Podlutskaya V, Nagykaldi E, Gautam T, Miller RA, Sonntag WE, Csiszar A, Ungvari Z (2017) The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. Geroscience

  • Ponticos M (2013) Connective tissue growth factor (CCN2) in blood vessels. Vasc Pharmacol 58:189–193

    Article  CAS  Google Scholar 

  • Ponticos M, Holmes AM, Shi-wen X, Leoni P, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, Abraham DJ, Leask A, Lindahl GE (2009) Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen. Arthritis Rheum 60:2142–2155

    Article  CAS  PubMed  Google Scholar 

  • Ruperez M, Lorenzo O, Blanco-Colio LM, Esteban V, Egido J, Ruiz-Ortega M (2003a) Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 108:1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Ruperez M, Ruiz-Ortega M, Esteban V, Lorenzo O, Mezzano S, Plaza JJ, Egido J (2003b) Angiotensin II increases connective tissue growth factor in the kidney. Am J Pathol 163:1937–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachdeva J, Mahajan A, Cheng J, Baeten JT, Lilly B, Kuivaniemi H, Hans CP (2017) Smooth muscle cell-specific Notch1 haploinsufficiency restricts the progression of abdominal aortic aneurysm by modulating CTGF expression. PLoS One 12:e0178538

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi H, Zhang C, Pasupuleti V, Hu X, Prosdocimo DA, Wu W, Qing Y, Wu S, Mohammad H, Gerson SL, Perbal B, Klenotic PA, Dong N, Lin Z (2017) CCN3 regulates macrophage foam cell formation and atherosclerosis. Am J Pathol 187:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Shi-Wen X, Renzoni EA, Kennedy L, Howat S, Chen Y, Pearson JD, Bou-Gharios G, Dashwood MR, du Bois RM, Black CM, Denton CP, Abraham DJ, Leask A (2007) Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biol 26:625–632

    Article  PubMed  Google Scholar 

  • Sonntag WE, Deak F, Ashpole N, Toth P, Csiszar A, Freeman W, Ungvari Z (2013) Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front Aging Neurosci 5:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souquette A, Frere J, Smithey M, Sauce D, Thomas PG (2017) A constant companion: immune recognition and response to cytomegalovirus with aging and implications for immune fitness. Geroscience 39:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ (2006) Seroprevalence of cytomegalovirus infection in the United States, 1988-1994. Clin Infect Dis 43:1143–1151

    Article  PubMed  Google Scholar 

  • Tan JT, McLennan SV, Williams PF, Rezaeizadeh A, Lo LW, Bonner JG, Twigg SM (2013) Connective tissue growth factor/CCN-2 is upregulated in epididymal and subcutaneous fat depots in a dietary-induced obesity model. Am J Physiol Endocrinol Metab 304:E1291–E1302

    Article  CAS  PubMed  Google Scholar 

  • Tarantini S, Hertelendy P, Tucsek Z, Valcarcel-Ares MN, Smith N, Menyhart A, Farkas E, Hodges EL, Towner R, Deak F, Sonntag WE, Csiszar A, Ungvari Z, Toth P (2015) Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J Cereb Blood Flow Metab 35:1871–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarantini S, Giles CB, Wren JD, Ashpole NM, Valcarcel-Ares MN, Wei JY, Sonntag WE, Ungvari Z, Csiszar A (2016a) IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis. Age (Dordr) 38:239–258

    Article  CAS  Google Scholar 

  • Tarantini S, Tran CH, Gordon GR, Ungvari Z, Csiszar A (2016b) Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. https://doi.org/10.1016/j.exger.2016.1011.1004

  • Tarantini S, Tucsek Z, Valcarcel-Ares M, Toth P, Gautam T, Giles C, Ballabh P, Wei Y, Wren J, Ashpole N, Sonntag W, Ungvari Z, Csiszar A (2016c) Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. Age (Dordr) 38:273–289

    Article  CAS  Google Scholar 

  • Tarantini S, Fulop GA, Kiss T, Farkas E, Zolei-Szenasi D, Galvan V, Toth P, Csiszar A, Ungvari Z, Yabluchanskiy A (2017a) Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer’s disease using functional laser speckle contrast imaging. Geroscience

  • Tarantini S, M.N. V-A, Yabluchanskiy A, Springo Z, Fulop GA, Ashpole N, Gautam T, Giles CB, Wren JD, Sonntag WE, Csiszar A, and Ungvari Z (2017b) IGF-1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell: in press

  • Tikka S, Baumann M, Siitonen M, Pasanen P, Poyhonen M, Myllykangas L, Viitanen M, Fukutake T, Cognat E, Joutel A, Kalimo H (2014) CADASIL and CARASIL. Brain Pathol 24:525–544

    Article  CAS  PubMed  Google Scholar 

  • Toth P, Csiszar A, Tucsek Z, Sosnowska D, Gautam T, Koller A, Schwartzman ML, Sonntag WE, Ungvari Z (2013a) Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol 305:H1698–H1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, Deak F, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2013b) Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab 33:1732–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth P, Tucsek Z, Tarantini S, Sosnowska D, Gautam T, Mitschelen M, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2014) IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice. J Cereb Blood Flow Metab 34:1887–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, Valcarcel-Ares NM, Menyhart A, Farkas E, Sonntag WE, Csiszar A, Ungvari Z (2015a) IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell 14:1034–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth P, Tarantini S, Springo Z, Tucsek Z, Gautam T, Giles CB, Wren JD, Koller A, Sonntag WE, Csiszar A, Ungvari Z (2015b) Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: role of resveratrol treatment in vasoprotection. Aging Cell 14:400–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touvron M, Escoubet B, Mericskay M, Angelini A, Lamotte L, Santini MP, Rosenthal N, Daegelen D, Tuil D, Decaux JF (2012) Locally expressed IGF1 propeptide improves mouse heart function in induced dilated cardiomyopathy by blocking myocardial fibrosis and SRF-dependent CTGF induction. Dis Model Mech 5:481–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueberham U, Ueberham E, Gruschka H, Arendt T (2003) Connective tissue growth factor in Alzheimer’s disease. Neuroscience 116:1–6

    Article  CAS  PubMed  Google Scholar 

  • Ungvari Z, Csiszar A (2012) The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci 67:599–610

    Article  PubMed  Google Scholar 

  • Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, Csiszar A (2010a) Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 299:H18–H24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A (2010b) Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 65:1028–1041

    Article  PubMed  Google Scholar 

  • Ungvari Z, Bailey-Downs L, Gautam T, Sosnowska D, Wang M, Monticone RE, Telljohann R, Pinto JT, de Cabo R, Sonntag WE, Lakatta E, Csiszar A (2011a) Age-associated vascular oxidative stress, Nrf2 dysfunction and NF-kB activation in the non-human primate Macaca mulatta. J Gerontol A Biol Sci Med Sci 66:866–875

    Article  PubMed  Google Scholar 

  • Ungvari Z, Bailey-Downs L, Sosnowska D, Gautam T, Koncz P, Losonczy G, Ballabh P, de Cabo R, Sonntag WE, Csiszar A (2011b) Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of Nrf2-mediated antioxidant response. Am J Physiol Heart Circ Physiol 301:H363–H372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungvari ZI, Bailey-Downs L, Gautam T, Jimenez R, Losonczy G, Zhang C, Ballabh P, Recchia FA, Wilkerson DC, Sonntag WE, Pearson KJ, de Cabo R, Csiszar A (2011c) Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. Am J Physiol Heart Circ Physiol 300:H1133–H1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungvari Z, Podlutsky A, Sosnowska D, Tucsek Z, Toth P, Deak F, Gautam T, Csiszar A, Sonntag WE (2013) Ionizing radiation promotes the acquisition of a senescence-associated secretory phenotype and impairs angiogenic capacity in cerebromicrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular radiosensitivity. J Gerontol A Biol Sci Med Sci 68:1443–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungvari Z, Tarantini S, Kirkpatrick AC, Csiszar A, Prodan CI (2017) Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am J Physiol Heart Circ Physiol 312:H1128–H1143

    Article  PubMed  Google Scholar 

  • van Almen GC, Verhesen W, van Leeuwen RE, van de Vrie M, Eurlings C, Schellings MW, Swinnen M, Cleutjens JP, van Zandvoort MA, Heymans S, Schroen B (2011) MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10:769–779

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, LeMaire SA, Chen L, Shen YH, Gan Y, Bartsch H, Carter SA, Utama B, Ou H, Coselli JS, Wang XL (2006) Increased collagen deposition and elevated expression of connective tissue growth factor in human thoracic aortic dissection. Circulation 114:I200–I205

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Ho L, Wang J, Qin W, Festa ED, Mobbs C, Hof P, Rocher A, Masur S, Haroutunian V, Pasinetti GM (2005) Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance-associated promotion of Alzheimer’s disease beta-amyloid neuropathology. FASEB J 19:2081–2082

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the American Heart Association (ST, ZU, and AC), the Oklahoma Center for the Advancement of Science and Technology (to AC, AY, ZU), the National Center for Complementary and Alternative Medicine (R01-AT006526 to ZU), the National Institute on Aging (R01-AG047879, R01-AG038747, P30 AG050911), the National Institute of Neurological Disorders and Stroke (NINDS; R01-NS056218 to AC), the Oklahoma Shared Clinical and Translational Resources (OSCTR) program funded by the National Institute of General Medical Sciences (U54GM104938, to AY), the Presbyterian Health Foundation (to ZU, AC, AY), and the EU-funded Hungarian grant EFOP-3.6.1-16-2016-00008. The authors acknowledge the support from the NIA-funded Geroscience Training Program in Oklahoma (T32AG052363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Csiszar.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungvari, Z., Valcarcel-Ares, M.N., Tarantini, S. et al. Connective tissue growth factor (CTGF) in age-related vascular pathologies. GeroScience 39, 491–498 (2017). https://doi.org/10.1007/s11357-017-9995-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-017-9995-5

Keywords

Navigation