Skip to main content
Log in

Assembly and structure of protein phosphatase 2A

  • In Memoriam: Professor Ray Wu
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Protein phosphatase 2A (PP2A) represents a conserved family of important protein serine/threonine phosphatases in species ranging from yeast to human. The PP2A core enzyme comprises a scaffold subunit and a catalytic subunit. The heterotrimeric PP2A holoenzyme consists of the core enzyme and a variable regulatory subunit. The catalytic subunit of PP2A is subject to reversible methylation, mediated by two conserved enzymes. Both the PP2A core and holoenzymes are regulated through interaction with a large number of cellular cofactors. Recent biochemical and structural investigation reveals critical insights into the assembly and function of the PP2A core enzyme as well as two families of holoenzyme. This review focuses on the molecular mechanisms revealed by these latest advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell, 1995, 80: 225–236 7834742, 10.1016/0092-8674(95)90405-0, 1:CAS:528:DyaK2MXjtlGnsrs%3D

    Article  PubMed  CAS  Google Scholar 

  2. Fischer E H, Krebs E G. Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem, 1955, 216: 121–132 13252012, 1:CAS:528:DyaG2MXosVOisQ%3D%3D

    PubMed  CAS  Google Scholar 

  3. Sutherland E W Jr, Wosilait W D. Inactivation and activation of liver phosphorylase. Nature, 1955, 175: 169–170 13235837, 10.1038/175169a0, 1:CAS:528:DyaG2MXjvFKktg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  4. Krebs E G, Fischer E H. The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta, 1956, 20: 150–157 13315361, 10.1016/0006-3002(56)90273-6, 1:CAS:528:DyaG28XmtVCkug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  5. Lander E S, Linton L M, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860–921 11237011, 10.1038/35057062, 1:CAS:528:DC%2BD3MXhsFCjtLc%3D

    Article  PubMed  CAS  Google Scholar 

  6. Johnson S A, Hunter T. Kinomics: methods for deciphering the kinome. Nat Methods, 2005, 2: 17–25 15789031, 10.1038/nmeth731, 1:CAS:528:DC%2BD2MXisVGiu7w%3D

    Article  PubMed  CAS  Google Scholar 

  7. Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome. Science, 2001, 291: 1304–1351 11181995, 10.1126/science.1058040, 1:CAS:528:DC%2BD3MXhtlSgsbo%3D

    Article  PubMed  CAS  Google Scholar 

  8. Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome. Cell, 2004, 117: 699–711 15186772, 10.1016/j.cell.2004.05.018, 1:CAS:528:DC%2BD2cXltlKisbc%3D

    Article  PubMed  CAS  Google Scholar 

  9. Cohen P T. Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci, 1997, 22: 245–251 9255065, 10.1016/S0968-0004(97)01060-8, 1:CAS:528:DyaK2sXks1yltLw%3D

    Article  PubMed  CAS  Google Scholar 

  10. Chernoff J, Li H C, Cheng Y S, et al. Characterization of a phosphotyrosyl protein phosphatase activity associated with a phosphoseryl protein phosphatase of Mr = 95,000 from bovine heart. J Biol Chem, 1983, 258: 7852–7857 6305959, 1:CAS:528:DyaL3sXktlGjsrY%3D

    PubMed  CAS  Google Scholar 

  11. Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J, 2001, 353: 417–439 11171037, 10.1042/0264-6021:3530417, 1:CAS:528:DC%2BD3MXhtlOrs70%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Virshup D M. Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol, 2000, 12: 180–185 10712915, 10.1016/S0955-0674(99)00074-5, 1:CAS:528:DC%2BD3cXitVantLg%3D

    Article  PubMed  CAS  Google Scholar 

  13. Lechward K, Awotunde O S, Swiatek W, et al. Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim Pol, 2001, 48: 921–933 11996003, 1:CAS:528:DC%2BD38XhsFKrsbg%3D

    PubMed  CAS  Google Scholar 

  14. Mumby M C, Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev, 1993, 73: 673–699 8415923, 1:STN:280:DyaK2c%2Fit1Kgsg%3D%3D

    PubMed  CAS  Google Scholar 

  15. Janssens V, Goris J, van Hoof C. PP2A: the expected tumor suppressor. Curr Opin Genet Dev, 2005, 15: 34–41 15661531, 10.1016/j.gde.2004.12.004, 1:CAS:528:DC%2BD2MXmvFekug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  16. Mumby M. PP2A: unveiling a reluctant tumor suppressor. Cell, 2007, 130: 21–24 17632053, 10.1016/j.cell.2007.06.034, 1:CAS:528:DC%2BD2sXotlGmtrw%3D

    Article  PubMed  CAS  Google Scholar 

  17. Lee J, Chen Y, Tolstykh T, et al. A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. Proc Natl Acad Sci USA, 1996, 93: 6043–6047 8650216, 10.1073/pnas.93.12.6043, 1:CAS:528:DyaK28Xjs1Ojtr4%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Xie H, Clarke S. Protein phosphatase 2A is reversibly modified by methyl esterification at its C-terminal leucine residue in bovine brain. J Biol Chem, 1994, 269: 1981–1984 8294450, 1:CAS:528:DyaK2cXhtVSgs7g%3D

    PubMed  CAS  Google Scholar 

  19. Xie H, Clarke S. An enzymatic activity in bovine brain that catalyzes the reversal of the C-terminal methyl esterification of protein phosphatase 2A. Biochem Biophys Res Commun, 1994, 203: 1710–1715 7945320, 10.1006/bbrc.1994.2383, 1:CAS:528:DyaK2cXmsV2itbs%3D

    Article  PubMed  CAS  Google Scholar 

  20. Xie H, Clarke S. Methyl esterification of C-terminal leucine residues in cytosolic 36-kDa polypeptides of bovine brain. A novel eucaryotic protein carboxyl methylation reaction. J Biol Chem, 1993, 268: 13364–13371 8514774, 1:CAS:528:DyaK3sXltFWrurs%3D

    PubMed  CAS  Google Scholar 

  21. Lee J, Stock J. Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem, 1993, 268: 19192–19195 8396127, 1:CAS:528:DyaK3sXltlCitbg%3D

    PubMed  CAS  Google Scholar 

  22. Xu Y, Xing Y, Chen Y, et al. Structure of the protein phosphatase 2A holoenzyme. Cell, 2006, 127: 1239–1251 17174897, 10.1016/j.cell.2006.11.033, 1:CAS:528:DC%2BD2sXhs1ensA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  23. Xing Y, Xu Y, Chen Y, et al. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell, 2006, 127: 341–353. 17055435, 10.1016/j.cell.2006.09.025, 1:CAS:528:DC%2BD28XhtFOkt73K

    Article  PubMed  CAS  Google Scholar 

  24. Tolstykh T, Lee J, Vafai S, et al. Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. Embo J, 2000, 19: 5682–5691 11060019, 10.1093/emboj/19.21.5682, 1:CAS:528:DC%2BD3cXovFaiur0%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Wei H, Ashby D G, Moreno C S, et al. Carboxymethylation of the PP2A catalytic subunit in Saccharomyces cerevisiae is required for efficient interaction with the B-type subunits Cdc55p and Rts1p. J Biol Chem, 2001, 276: 1570–1577 11038366, 10.1074/jbc.M008694200, 1:CAS:528:DC%2BD3MXmtV2msg%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Ogris E, Gibson D M, Pallas D C. Protein phosphatase 2A subunit assembly: the catalytic subunit carboxy terminus is important for binding cellular B subunit but not polyomavirus middle tumor antigen. Oncogene, 1997, 15: 911–917 9285686, 10.1038/sj.onc.1201259, 1:CAS:528:DyaK2sXlvFSisbs%3D

    Article  PubMed  CAS  Google Scholar 

  27. Ikehara T, Ikehara S, Imamura S, et al. Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B). Biochem Biophys Res Commun, 2007, 354: 1052–1057 17274953, 10.1016/j.bbrc.2007.01.085, 1:CAS:528:DC%2BD2sXhs1SnsLw%3D

    Article  PubMed  CAS  Google Scholar 

  28. Xu Y, Chen Y, Zhang P, et al. Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell, 2008, 31: 873–885 18922469, 10.1016/j.molcel.2008.08.006, 1:CAS:528:DC%2BD1cXht1amsb%2FM

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Chung H, Nairn A C, Murata K, et al. Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the alpha 4 subunit which promotes dephosphorylation of elongation factor-2. Biochemistry, 1999, 38: 10371–10376 10441131, 10.1021/bi990902g, 1:CAS:528:DyaK1MXksFSnu7c%3D

    Article  PubMed  CAS  Google Scholar 

  30. Kong M, Fox C J, Mu J, et al. The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science, 2004, 306: 695–698 15499020, 10.1126/science.1100537, 1:CAS:528:DC%2BD2cXos1KqtLw%3D

    Article  PubMed  CAS  Google Scholar 

  31. Mumby M. A new role for protein methylation: switching partners at the phosphatase ball. Sci STKE, 2001, 2001: PE1

  32. Wu J, Tolstykh T, Lee J, et al. Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. Embo J, 2000, 19: 5672–5681 11060018, 10.1093/emboj/19.21.5672, 1:CAS:528:DC%2BD3cXovFaiurw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. De Baere I, Derua R, Janssens V, et al. Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue. Biochemistry, 1999, 38: 16539–16547 10600115, 10.1021/bi991646a

    Article  PubMed  Google Scholar 

  34. Turowski P, Fernandez A, Favre B, et al. Differential methylation and altered conformation of cytoplasmic and nuclear forms of protein phosphatase 2A during cell cycle progression. J Cell Biol, 1995, 129: 397–410 7721943, 10.1083/jcb.129.2.397, 1:CAS:528:DyaK2MXkvFCis74%3D

    Article  PubMed  CAS  Google Scholar 

  35. Lee J A, Pallas D C. Leucine carboxyl methyltransferase-1 is necessary for normal progression through mitosis in mammalian cells. J Biol Chem, 2007, 282: 30974–30984 17724024, 10.1074/jbc.M704861200, 1:CAS:528:DC%2BD2sXhtFGgs7zK

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Hemmings B A, Adams-Pearson C, Maurer F, et al. alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry, 1990, 29: 3166–3173 2159327, 10.1021/bi00465a002, 1:CAS:528:DyaK3cXitlWrs7g%3D

    Article  PubMed  CAS  Google Scholar 

  37. Walter G, Ferre F, Espiritu O, et al. Molecular cloning and sequence of cDNA encoding polyoma medium tumor antigen-associated 61-kDa protein. Proc Natl Acad Sci USA, 1989, 86: 8669–8672 2554323, 10.1073/pnas.86.22.8669, 1:CAS:528:DyaK3cXitlSnt7c%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Groves M R, Hanlon N, Turowski P, et al. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell, 1999, 96: 99–110 9989501, 10.1016/S0092-8674(00)80963-0, 1:CAS:528:DyaK1MXmslagug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  39. Cho U S, Xu W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 2007, 445: 53–57 17086192, 10.1038/nature05351, 1:CAS:528:DC%2BD2sXhsFOmsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  40. Chen Y, Xu Y, Bao Q, et al. Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nat Struct Mol Biol, 2007, 14: 527–534 17529992, 10.1038/nsmb1254, 1:CAS:528:DC%2BD2sXmtVyjtbo%3D

    Article  PubMed  CAS  Google Scholar 

  41. Cho U S, Morrone S, Sablina A A, et al. Structural basis of PP2A inhibition by small t antigen. PLoS Biol, 2007, 5: e202 17608567, 10.1371/journal.pbio.0050202

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ruediger R, Roeckel D, Fait J, et al. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol, 1992, 12: 4872–4882 1328865, 1:CAS:528:DyaK38XmsVOksL4%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Ruediger R, Hentz M, Fait J, et al. Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. J Virol, 1994, 68: 123–129 8254721, 1:CAS:528:DyaK2cXhtVSntbg%3D

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Kremmer E, Ohst K, Kiefer J, et al. Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol Cell Biol, 1997, 17: 1692–1701 9032296, 1:CAS:528:DyaK2sXhtlyqtrc%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Yang S I, Lickteig R L, Estes R, et al. Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol, 1991, 11: 1988–1995 1706474, 1:CAS:528:DyaK3MXhsF2ksrg%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Scheidtmann K H, Mumby M C, Rundell K, et al. Dephosphorylation of simian virus 40 large-T antigen and p53 protein by protein phosphatase 2A: inhibition by small-t antigen. Mol Cell Biol, 1991, 11: 1996–2003 1848668, 1:CAS:528:DyaK3MXhsF2ksrk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Ruediger R, Pham H T, Walter G. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene, 2001, 20: 10–15 11244497, 10.1038/sj.onc.1204059, 1:CAS:528:DC%2BD3MXhtFChsbw%3D

    Article  PubMed  CAS  Google Scholar 

  48. Wang S S, Esplin E D, Li J L, et al. Alterations of the PPP2R1B gene in human lung and colon cancer. Science, 1998, 282: 284–287 9765152, 10.1126/science.282.5387.284, 1:CAS:528:DyaK1cXmsF2jurc%3D

    Article  PubMed  CAS  Google Scholar 

  49. Ruediger R, Pham H T, Walter G. Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene, 2001, 20: 1892–1899 11313937, 10.1038/sj.onc.1204279, 1:CAS:528:DC%2BD3MXivFKhtrc%3D

    Article  PubMed  CAS  Google Scholar 

  50. Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J, 1988, 256: 283–290 2851982, 1:CAS:528:DyaL1MXitVequg%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. MacKintosh C, Beattie K A, Klumpp S, et al. Cyanobacterial micro-cystin- LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett, 1990, 264: 187–192 2162782, 10.1016/0014-5793(90)80245-E, 1:CAS:528:DyaK3cXlsVOjs74%3D

    Article  PubMed  CAS  Google Scholar 

  52. Kitajima T S, Sakuno T, Ishiguro K, et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature, 2006, 441: 46–52 16541025, 10.1038/nature04663, 1:CAS:528:DC%2BD28XktVGltr0%3D

    Article  PubMed  CAS  Google Scholar 

  53. Riedel C G, Katis VL, Katou Y, et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature, 2006, 441: 53–61 16541024, 10.1038/nature04664, 1:CAS:528:DC%2BD28XktVGltrg%3D

    Article  PubMed  CAS  Google Scholar 

  54. Tang Z, Shu H, Qi W, et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev Cell, 2006, 10: 575–585 16580887, 10.1016/j.devcel.2006.03.010, 1:CAS:528:DC%2BD28XltVyktr8%3D

    Article  PubMed  CAS  Google Scholar 

  55. Conti E, Uy M, Leighton L, et al. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell, 1998, 94: 193–204 9695948, 10.1016/S0092-8674(00)81419-1, 1:CAS:528:DyaK1cXltVOntL8%3D

    Article  PubMed  CAS  Google Scholar 

  56. Graham T A, Weaver C, Mao F, et al. Crystal structure of a beta-catenin/Tcf complex. Cell, 2000, 103: 885–896 11136974, 10.1016/S0092-8674(00)00192-6, 1:CAS:528:DC%2BD3cXovFCjt7c%3D

    Article  PubMed  CAS  Google Scholar 

  57. Kamibayashi C, Lickteig R L, Estes R, et al. Expression of the A subunit of protein phosphatase 2A and characterization of its interactions with the catalytic and regulatory subunits. J Biol Chem, 1992, 267: 21864–21872 1328247, 1:CAS:528:DyaK3sXitVynsr4%3D

    PubMed  CAS  Google Scholar 

  58. Kamibayashi C, Estes R, Lickteig R L, et al. Comparison of heterotrimeric protein phosphatase 2A containing different B subunits. J Biol Chem, 1994, 269: 20139–20148 8051102, 1:CAS:528:DyaK2cXlt1yntrw%3D

    PubMed  CAS  Google Scholar 

  59. Li X, Virshup D M. Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A. Eur J Biochem, 2002, 269: 546–552 11856313, 10.1046/j.0014-2956.2001.02680.x, 1:CAS:528:DC%2BD38XhtVyhu7s%3D

    Article  PubMed  CAS  Google Scholar 

  60. Janssens V, Jordens J, Stevens I, et al. Identification and functional analysis of two Ca2+-binding EF-hand motifs in the B″/PR72 subunit of protein phosphatase 2A. J Biol Chem, 2003, 278: 10697–10706 12524438, 10.1074/jbc.M211717200, 1:CAS:528:DC%2BD3sXitVCqsbo%3D

    Article  PubMed  CAS  Google Scholar 

  61. Ikehara T, Ikehara S, Imamura S, et al. Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B). Biochem Biophys Res Commun, 2007, 354: 1052–1057 17274953, 10.1016/j.bbrc.2007.01.085, 1:CAS:528:DC%2BD2sXhs1SnsLw%3D

    Article  PubMed  CAS  Google Scholar 

  62. Goedert M, Spillantini M G. A century of Alzheimer’s disease. Science, 2006, 314: 777–781 17082447, 10.1126/science.1132814, 1:CAS:528:DC%2BD28XhtFKit73K

    Article  PubMed  CAS  Google Scholar 

  63. Goedert M, Jakes R, Qi Z, et al. Protein phosphatase 2A is the major enzyme in brain that dephosphorylates tau protein phosphorylated by proline-directed protein kinases or cyclic AMP-dependent protein kinase. J Neurochem, 1995, 65: 804–807

    Google Scholar 

  64. Sontag E, Nunbhakdi-Craig V, Lee G, et al. Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron, 1996, 17: 1201–1207 8982166, 10.1016/S0896-6273(00)80250-0, 1:CAS:528:DyaK2sXislCiuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  65. Sontag E, Nunbhakdi-Craig V, Lee G, et al. Molecular interactions among protein phosphatase 2A, tau, and microtubules. Implications for the regulation of tau phosphorylation and the development of tauopathies. J Biol Chem, 1999, 274: 25490–25498 10464280, 10.1074/jbc.274.36.25490, 1:CAS:528:DyaK1MXmtVWiu7o%3D

    Article  PubMed  CAS  Google Scholar 

  66. Gong C X, Lidsky T, Wegiel J, et al. Phosphorylation of microtubule- associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J Biol Chem, 2000, 275: 5535–5544 10681533, 10.1074/jbc.275.8.5535, 1:CAS:528:DC%2BD3cXhsFKktr4%3D

    Article  PubMed  CAS  Google Scholar 

  67. Bennecib M, Gong C X, Grundke-Iqbal I, et al. Role of protein phosphatase-2A and -1 in the regulation of GSK-3, cdk5 and cdc2 and the phosphorylation of tau in rat forebrain. FEBS Lett, 2000, 490: 15–22 10.1016/S0014-5793(01)02127-5

    Article  Google Scholar 

  68. Kins S, Crameri A, Evans D R, et al. Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice. J Biol Chem, 2001, 276: 38193–38200 11473109, 1:CAS:528:DC%2BD3MXotFOru7g%3D

    PubMed  CAS  Google Scholar 

  69. Weingarten M D, Lockwood A H, Hwo S Y, et al. A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA, 1975, 72: 1858–1862 1057175, 10.1073/pnas.72.5.1858, 1:CAS:528:DyaE2MXkt1ersbw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Witman G B, Cleveland D W, Weingarten M D, et al. Tubulin requires tau for growth onto microtubule initiating sites. Proc Natl Acad Sci USA, 1976, 73: 4070–4074 1069293, 10.1073/pnas.73.11.4070, 1:CAS:528:DyaE2sXjvVyqsg%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Alonso A C, Zaidi T, Grundke-Iqbal I, et al. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA, 1994, 91: 5562–5566 8202528, 10.1073/pnas.91.12.5562, 1:STN:280:DyaK2c3mtFKhtA%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Drewes G, Mandelkow EM, Baumann K, et al. Dephosphorylation of tau protein and Alzheimer paired helical filaments by calcineurin and phosphatase-2A. FEBS Lett, 1993, 336: 425–432 8282105, 10.1016/0014-5793(93)80850-T, 1:CAS:528:DyaK2cXhtlWgsbw%3D

    Article  PubMed  CAS  Google Scholar 

  73. Gong C X, Grundke-Iqbal I, Iqbal K. Dephosphorylation of Alzheimer’s disease abnormally phosphorylated tau by protein phosphatase-2A. Neuroscience, 1994, 61: 765–772 7838376, 10.1016/0306-4522(94)90400-6, 1:CAS:528:DyaK2MXms1eltw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  74. Bryant J C, Westphal R S, Wadzinski B E. Methylated C-terminal leucine residue of PP2A catalytic subunit is important for binding of regulatory Balpha subunit. Biochem J, 1999, 339: 241–246 10191253, 10.1042/0264-6021:3390241, 1:CAS:528:DyaK1MXjtVaktrk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Yu X X, Du X, Moreno C S, et al. Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. Mol Biol Cell, 2001, 12: 185–199 11160832, 1:CAS:528:DC%2BD3MXlvFKktw%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Kloeker S, Bryant J C, Strack S, et al. Carboxymethylation of nuclear protein serine/threonine phosphatase X. Biochem J, 1997, 327( Pt 2): 481–486 9359419, 1:CAS:528:DyaK2sXntV2jtLg%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Longin S, Zwaenepoel K, Louis J V, et al. Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic Subunit. J Biol Chem, 2007, 282: 26971–26980 17635907, 10.1074/jbc.M704059200, 1:CAS:528:DC%2BD2sXhtVWjsLjK

    Article  PubMed  CAS  Google Scholar 

  78. Gentry M S, Li Y, Wei H, et al. A novel assay for protein phosphatase 2A (PP2A) complexes in vivo reveals differential effects of covalent modifications on different Saccharomyces cerevisiae PP2A heterotrimers. Eukaryot Cell, 2005, 4: 1029–1040 15947195, 10.1128/EC.4.6.1029-1040.2005, 1:CAS:528:DC%2BD2MXlvFSmtL0%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Ogris E, Du X, Nelson K C, et al. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. J Biol Chem, 1999, 274: 14382–14391 10318862, 10.1074/jbc.274.20.14382, 1:CAS:528:DyaK1MXjsFWqtLc%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Longin S, Jordens J, Martens E, et al. An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator. Biochem J, 2004, 380: 111–119 14748741, 10.1042/BJ20031643, 1:CAS:528:DC%2BD2cXks1yqsrY%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Xing Y, Li Z, Chen Y, et al. Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell, 2008, 133: 154–163 18394995, 10.1016/j.cell.2008.02.041, 1:CAS:528:DC%2BD1cXkslOks7w%3D

    Article  PubMed  CAS  Google Scholar 

  82. Longin S, Zwaenepoel K, Martens E, et al. Spatial control of protein phosphatase 2A (de)methylation. Exp Cell Res, 2008, 314: 68–81 17803990, 10.1016/j.yexcr.2007.07.030, 1:CAS:528:DC%2BD2sXhtlyrtrbO

    Article  PubMed  CAS  Google Scholar 

  83. Fellner T, Lackner D H, Hombauer H, et al. A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes Dev, 2003, 17: 2138–2150 12952889, 10.1101/gad.259903, 1:CAS:528:DC%2BD3sXntFeqsrw%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Hombauer H, Weismann D, Mudrak I, et al. Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol, 2007, 5: e155 17550305, 10.1371/journal.pbio.0050155

    Article  PubMed Central  PubMed  Google Scholar 

  85. Chao Y, Xing Y, Chen Y, et al. Structure and Mechanism of the Phosphotyrosyl Phosphatase Activator. Mol Cell, 2006, 23: 535–546 16916641, 10.1016/j.molcel.2006.07.027, 1:CAS:528:DC%2BD28Xpt1Sntbc%3D

    Article  PubMed  CAS  Google Scholar 

  86. Leulliot N, Vicentini G, Jordens J, et al. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Mol Cell, 2006, 23: 413–424 16885030, 10.1016/j.molcel.2006.07.008, 1:CAS:528:DC%2BD28XovVWlu70%3D

    Article  PubMed  CAS  Google Scholar 

  87. Magnusdottir A, Stenmark P, Flodin S, et al. The crystal structure of a human PP2A phosphatase activator reveals a novel fold and highly conserved cleft implicated in protein-protein interactions. J Biol Chem, 2006, 281:22434–22438 16782712, 10.1074/jbc.C600100200, 1:CAS:528:DC%2BD28XnvVSqurs%3D

    Article  PubMed  CAS  Google Scholar 

  88. Yang J, Roe S M, Prickett T D, et al. The structure of Tap42/alpha4 reveals a tetratricopeptide repeat-like fold and provides insights into PP2A regulation. Biochemistry, 2007, 46: 8807–8815 17616149, 10.1021/bi7007118, 1:CAS:528:DC%2BD2sXns1Cksr0%3D

    Article  PubMed  CAS  Google Scholar 

  89. Cayla X, Goris J, Hermann J, et al. Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes. Biochemistry, 1990, 29: 658–667 2159785, 10.1021/bi00455a010, 1:CAS:528:DyaK3cXltFWjtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  90. van Hoof C, Cayla X, Bosch M, et al. The phosphotyrosyl phosphatase activator of protein phosphatase 2A. A novel purification method, immunological and enzymic characterization. Eur J Biochem, 1994, 226: 899–907 7813481, 10.1111/j.1432-1033.1994.00899.x

    Article  PubMed  Google Scholar 

  91. Prickett T D, Brautigan D L. Overlapping binding sites in protein phosphatase 2A for association with regulatory A and alpha-4 (mTap42) subunits. J Biol Chem, 2004, 279: 38912–38920 15252037, 10.1074/jbc.M401444200, 1:CAS:528:DC%2BD2cXnt1yjsL8%3D

    Article  PubMed  CAS  Google Scholar 

  92. Nicholls A, Sharp K A, Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct Funct Genet, 1991, 11: 281–296 10.1002/prot.340110407, 1:CAS:528:DyaK38XhtVWgur4%3D

    Article  CAS  Google Scholar 

  93. Kraulis P J. Molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr, 1991, 24: 946–950 10.1107/S0021889891004399

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiGong Shi.

Additional information

Supported by NIH grant R01 CA123155 and Start-up Funds from Tsinghua University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y. Assembly and structure of protein phosphatase 2A. SCI CHINA SER C 52, 135–146 (2009). https://doi.org/10.1007/s11427-009-0018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0018-3

Keywords

Navigation