Skip to main content
Log in

Endothelial Notch activation promotes neutrophil transmigration via downregulating endomucin to aggravate hepatic ischemia/reperfusion injury

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Inflammatory leukocytes infiltration is orchestrated by mechanisms involving chemokines, selectins, addressins and other adhesion molecules derived from endothelial cells (ECs), but how they respond to inflammatory cues and coordinate leukocyte transmigration remain elusive. In this study, using hepatic ischemia/reperfusion injury (HIRI) as a model, we identified that endothelial Notch activation was rapidly and dynamically induced in liver sinusoidal endothelial cells (LSECs) in acute inflammation. In mice with EC-specific Notch activation (NICeCA), HIRI induced exacerbated liver damage. Consistently, endothelial Notch activation enhanced neutrophil infiltration and tumor necrosis factor (TNF)-α expression in HIRI. Transcriptome analysis and further qRT-PCR as well as immunofluorescence indicated that endomucin (EMCN), a negative regulator of leukocyte adhesion, was downregulated in LSECs from NICeCA mice. EMCN was downregulated during HIRI in wild-type mice and in vitro cultured ECs insulted by hypoxia/re-oxygenation injury. Notch activation in ECs led to increased neutrophil adhesion and transendothelial migration, which was abrogated by EMCN overexpression in vitro. In mice deficient of RBPj, the integrative transcription factor of canonical Notch signaling, although overwhelming sinusoidal malformation aggravated HIRI, the expression of EMCN was upregulated; and pharmaceutical Notch blockade in vitro also upregulated EMCN and inhibited transendothelial migration of neutrophils. The Notch activation-exaggerated HIRI was compromised by blocking LFA-1, which mediated leukocyte adherence by associating with EMCN. Therefore, endothelial Notch signaling controls neutrophil transmigration via EMCN to modulate acute inflammation in HIRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando, K., Kanazawa, S., Tetsuka, T., Ohta, S., Jiang, X., Tada, T., Kobayashi, M., Matsui, N., and Okamoto, T. (2003). Induction of Notch signaling by tumor necrosis factor in rheumatoid synovial fibroblasts. Oncogene 22, 7796–7803.

    CAS  PubMed  Google Scholar 

  • Bharadwaj, A.S., Schewitz-Bowers, L.P., Wei, L., Lee, R.W.J., and Smith, J.R. (2013). Intercellular adhesion molecule 1 mediates migration of Th1 and Th17 cells across human retinal vascular endothelium. Invest Ophthalmol Vis Sci 54, 6917–6925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bray, S., and Bernard, F. (2010). Notch targets and their regulation. Curr Top Dev Biol, 92, 253–275.

    CAS  PubMed  Google Scholar 

  • Cai, H., Yao, Z., and Li, W. (2017). IRF-5 accelerates leukocyte adhesion to endothelial cells in ischemia-reperfusion injury through regulating the transcription of VCAM-1. Biochem Biophys Res Commun 492, 192–198.

    CAS  PubMed  Google Scholar 

  • Cuervo, H., Nielsen, C.M., Simonetto, D.A., Ferrell, L., Shah, V.H., and Wang, R.A. (2016). Endothelial notch signaling is essential to prevent hepatic vascular malformations in mice. Hepatology 64, 1302–1316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danese, S., and Panés, J. (2014). Development of drugs to target interactions between leukocytes and endothelial cells and treatment algorithms for inflammatory bowel diseases. Gastroenterology 147, 981–989.

    CAS  PubMed  Google Scholar 

  • Duan, J.L., Ruan, B., Yan, X.C., Liang, L., Song, P., Yang, Z.Y., Liu, Y., Dou, K.F., Han, H., and Wang, L. (2018). Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology 68, 677–690.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filippi, M.D. (2016). Mechanism of diapedesis: importance of the transcellular route. Adv Immunol, 129, 25–53.

    CAS  PubMed  Google Scholar 

  • Fu, J.Z., Wang, Y., Zhang, L.J., and Yu, Z.L. (2009). Protective effect of liver ischemic preconditioning on rat hepatocytes. Sci China Ser C Life Sci 52, 836–840.

    Google Scholar 

  • Geisler, F., and Strazzabosco, M. (2015). Emerging roles of Notch signaling in liver disease. Hepatology 61, 382–392.

    CAS  Google Scholar 

  • Glenny, R.W., Bernard, S., and Brinkley, M. (1993). Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J Appl Physiol 74, 2585–2597.

    CAS  PubMed  Google Scholar 

  • Greuter, T., and Shah, V.H. (2016). Hepatic sinusoids in liver injury, inflammation, and fibrosis: new pathophysiological insights. J Gastroenterol 51, 511–519.

    CAS  PubMed  Google Scholar 

  • Gridley, T. (2007). Notch signaling in vascular development and physiology. Development 134, 2709–2718.

    CAS  PubMed  Google Scholar 

  • Gridley, T. (2010). Notch signaling in the vasculature. Curr Top Dev Biol, 92, 277–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, X., Chung, A.Y., Wu, I., Foldi, J., Chen, J., Ji, J.D., Tateya, T., Kang, Y. J., Han, J., Gessler, M., et al. (2008). Integrated regulation of Toll-like receptor responses by Notch and interferon-λ pathways. Immunity 29, 691–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanki, Y., Kohro, T., Jiang, S., Tsutsumi, S., Mimura, I., Suehiro, J.I., Wada, Y., Ohta, Y., Ihara, S., Iwanari, H., et al. (2011). Epigenetically coordinated GATA2 binding is necessary for endothelium-specific endomucin expression. EMBO J 30, 2582–2595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, N.D., and Luster, A.D. (2015). The role of tissue resident cells in neutrophil recruitment. Trends Immunol 36, 547–555.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita, M., Nakamura, T., Ihara, M., Haraguchi, T., Hiraoka, Y., Tashiro, K., and Noda, M. (2001). Identification of human endomucin-1 and -2 as membrane-bound O-sialoglycoproteins with anti-adhesive activity. FEBS Lett 499, 121–126.

    CAS  PubMed  Google Scholar 

  • Kolaczkowska, E., and Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13, 159–175.

    CAS  PubMed  Google Scholar 

  • Konishi, T., and Lentsch, A.B. (2017). Hepatic ischemia/reperfusion: mechanisms of tissue injury, repair, and regeneration. Gene Expr 17, 277–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusumbe, A.P., Ramasamy, S.K., and Adams, R.H. (2014). Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, K., Laudanna, C., Cybulsky, M.I., and Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7, 678–689.

    CAS  PubMed  Google Scholar 

  • Liu, C., Shao, Z.M., Zhang, L., Beatty, P., Sartippour, M., Lane, T., Livingston, E., and Nguyen, M. (2001). Human endomucin is an endothelial marker. Biochem Biophys Res Commun 288, 129–136.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Zheng, Q., He, G., Zhang, M., Yan, X., Yang, Z., Zhang, P., Wang, L., Liu, J., Liang, L., et al. (2019). Transmembrane protein 215 promotes angiogenesis by maintaining endothelial cell survival. J Cell Physiol 234, 9525–9534.

    CAS  PubMed  Google Scholar 

  • Ma, P.F., Gao, C.C., Yi, J., Zhao, J.L., Liang, S.Q., Zhao, Y., Ye, Y.C., Bai, J., Zheng, Q.J., Dou, K.F., et al. (2017). Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol 67, 770–779.

    CAS  PubMed  Google Scholar 

  • Maniati, E., Bossard, M., Cook, N., Candido, J.B., Emami-Shahri, N., Nedospasov, S.A., Balkwill, F.R., Tuveson, D.A., and Hagemann, T. (2011). Crosstalk between the canonical NF-?B and Notch signaling pathways inhibits Ppar? expression and promotes pancreatic cancer progression in mice. J Clin Invest 121, 4685–4699.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald, B., Pittman, K., Menezes, G.B., Hirota, S.A., Slaba, I., Waterhouse, C.C.M., Beck, P.L., Muruve, D.A., and Kubes, P. (2010). Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366.

    CAS  PubMed  Google Scholar 

  • Mun, G.I., and Boo, Y.C. (2010). Identification of CD44 as a senescenceinduced cell adhesion gene responsible for the enhanced monocyte recruitment to senescent endothelial cells. Am J Physiol Heart Circ Physiol 298, H2102–H2111.

    CAS  PubMed  Google Scholar 

  • Oliveira, T.H.C., Marques, P.E., Proost, P., and Teixeira, M.M.M. (2018). Neutrophils: a cornerstone of liver ischemia and reperfusion injury. Lab Invest 98, 51–62.

    PubMed  Google Scholar 

  • Ottaviani, S., Tahiri, K., Frazier, A., Hassaine, Z.N., Dumontier, M.F., Baschong, W., Rannou, F., Corvol, M.T., Savouret, J.F., and Richette, P. (2010). Hes1, a new target for interleukin 1 in chondrocytes. Ann Rheumatic Dis 69, 1488–1494.

    CAS  Google Scholar 

  • Park-Windhol, C., Ng, Y.S., Yang, J., Primo, V., Saint-Geniez, M., and D’Amore, P.A. (2017). Endomucin inhibits VEGF-induced endothelial cell migration, growth, and morphogenesis by modulating VEGFR2 signaling. Sci Rep 7, 17138.

    PubMed  PubMed Central  Google Scholar 

  • Peralta, C., Jiménez-Castro, M.B., and Gracia-Sancho, J. (2013). Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol 59, 1094–1106.

    PubMed  Google Scholar 

  • Shah, V., Haddad, F.G., Garcia-Cardena, G., Frangos, J.A., Mennone, A., Groszmann, R.J., and Sessa, W.C. (1997). Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest 100, 2923–2930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Y., Smith, S., and Hu, X. (2016). Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell 7, 159–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siebel, C., and Lendahl, U. (2017). Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97, 1235–1294.

    CAS  PubMed  Google Scholar 

  • Sun, J.X., Chang, T.F., Li, M.H., Sun, L.J., Yan, X.C., Yang, Z.Y., Liu, Y., Xu, W.Q., Lv, Y., Su, J.B., et al. (2018). SNAI1, an endothelialmesenchymal transition transcription factor, promotes the early phase of ocular neovascularization. Angiogenesis 21, 635–652.

    CAS  PubMed  Google Scholar 

  • Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell 140, 805–820.

    CAS  PubMed  Google Scholar 

  • Tan, J., Gu, S., Zheng, Y., and Yang, H. (2019). Expression profile of circular RNAs in myocardial ischemia/reperfusion with and without intermittent hypobaric hypoxia preconditioning. Sci China Life Sci 62, 1104–1106.

    PubMed  Google Scholar 

  • Tan, S.Y., and Weninger, W. (2017). Neutrophil migration in inflammation: intercellular signal relay and crosstalk. Curr Opin Immunol 44, 34–42.

    CAS  PubMed  Google Scholar 

  • Tanigaki, K., Tsuji, M., Yamamoto, N., Han, H., Tsukada, J., Inoue, H., Kubo, M., and Honjo, T. (2004). Regulation of αß/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20, 611–622.

    CAS  PubMed  Google Scholar 

  • Wang, Y.C., He, F., Feng, F., Liu, X.W., Dong, G.Y., Qin, H.Y., Hu, X.B., Zheng, M.H., Liang, L., Feng, L., et al. (2010). Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70, 4840–4849.

    CAS  PubMed  Google Scholar 

  • Wieland, E., Rodriguez-Vita, J., Liebler, S.S., Mogler, C., Moll, I., Herberich, S.E., Espinet, E., Herpel, E., Menuchin, A., Chang-Claude, J., et al. (2017). Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31, 355–367.

    CAS  PubMed  Google Scholar 

  • Wohlfeil, S.A., Häfele, V., Dietsch, B., Schledzewski, K., Winkler, M., Zierow, J., Leibing, T., Mohammadi, M.M., Heineke, J., Sticht, C., et al. (2019). Hepatic endothelial Notch activation protects against liver metastasis by regulating endothelial-tumor cell adhesion independent of angiocrine signaling. Cancer Res 79, 598–610.

    CAS  PubMed  Google Scholar 

  • Wu, J., Deng, X., Gao, J., Gao, W., Xiao, H., Wang, X., and Zhang, Y. (2019). Autophagy mediates the secretion of macrophage migration inhibitory factor from cardiomyocytes upon serum-starvation. Sci China Life Sci 62, 1038–1046.

    CAS  PubMed  Google Scholar 

  • Xu, J., Chi, F., Guo, T., Punj, V., Lee, W.N.P., French, S.W., and Tsukamoto, H. (2015). NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation. J Clin Invest 125, 1579–1590.

    PubMed  PubMed Central  Google Scholar 

  • Ye, Y.C., Zhao, J.L., Lu, Y.T., Gao, C.C., Yang, Y., Liang, S.Q., Lu, Y.Y., Wang, L., Yue, S.Q., Dou, K.F., et al. (2019). Notch signaling via Wnt regulates the proliferation of alternative, CCR2-independent tumorassociated macrophages in hepatocellular carcinoma. Cancer Res 79, 4160–4172.

    CAS  PubMed  Google Scholar 

  • Yu, H.C., Qin, H.Y., He, F., Wang, L., Fu, W., Liu, D., Guo, F.C., Liang, L., Dou, K.F., and Han, H. (2011). Canonical Notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling. Hepatology 54, 979–988.

    CAS  PubMed  Google Scholar 

  • Yuan, R., and Li, L. (2016). Dynamic modulation of innate immunity programming and memory. Sci China Life Sci 59, 38–43.

    CAS  PubMed  Google Scholar 

  • Zahr, A., Alcaide, P., Yang, J., Jones, A., Gregory, M., dela Paz, N.G., Patel-Hett, S., Nevers, T., Koirala, A., Luscinskas, F.W., et al. (2016). Endomucin prevents leukocyte-endothelial cell adhesion and has a critical role under resting and inflammatory conditions. Nat Commun 7, 10363.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, P., Yan, X.C., Chen, Y., Yang, Z.Y., and Han, H. (2014). Notch signaling in blood vessels: from morphogenesis to homeostasis. Sci China Life Sci 57, 774–780.

    CAS  PubMed  Google Scholar 

  • Zhao, B., Grimes, S.N., Li, S., Hu, X., and Ivashkiv, L.B. (2012). TNFinduced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med 209, 319–334.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31730041, 31671523, and 81470416). The experiments were fulfilled at the Postgraduate Innovative Research Center of the Fourth Military Medical University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Liang, Lin Wang or Hua Han.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest. All aspects of this research were conducted in accordance with the Chinese Guidelines for Animal Welfare and Experimental Protocols. Approval was obtained from the Animal Experiment Administration Committee of the Fourth Military Medical University. The use of human tissues was approved by the Ethics Committee, Xijing Hospital. Informed consent was obtained from each subject involved in this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Yue, K., Liu, X. et al. Endothelial Notch activation promotes neutrophil transmigration via downregulating endomucin to aggravate hepatic ischemia/reperfusion injury. Sci. China Life Sci. 63, 375–387 (2020). https://doi.org/10.1007/s11427-019-1596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1596-4

Keywords

Navigation