Skip to main content

Advertisement

Log in

Effects of Opioid Tolerance and Withdrawal on the Immune System

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Review of the robust literature using acute drug injection paradigms points clearly to the conclusion that morphine is immunosuppressive. In contrast, studies of the effect of subacute or chronic administration of morphine on immune function is limited, with variable results. In some cases tolerance to the immunosuppressive effects of the drug is clearly demonstrated, but in other cases, selected immune parameters do not demonstrate tolerance. Discrepancies in findings may result from differences in species or route and manner of drug administration. Even fewer studies (total of 10) have been published on the effects of withdrawal on immune function. Most immune parameters tested are suppressed following drug withdrawal. Recovery time to baseline response levels varies in the studies. In the single report of withdrawal in humans, immune function was suppressed for up to 3 years. It is clearly established that withdrawal suppresses capacity of murine spleen cells to make an ex vivo antibody response, which contrasts with evidence of polarization of the lymphocytes towards a Th2 phenotype. Several laboratories have shown that subacute and chronic exposure to morphine, as well as drug withdrawal, sensitize to the lethal effects of bacterial lipopolysaccharide. Underlying sepsis, combined with morphine-induced hypofunction of the hypothalamic-pituitaryadrenal (HPA) axis, may be occult variables modulating immune responses during opioid administration and withdrawal. As episodes of withdrawal are common among drug abusers, more intensive investigation is warranted on the effects of withdrawal on immune function, on mechanisms of immune modulation, and on sensitization to infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

CD:

cluster of differentiation

CD3:

antigenic marker found on all T cells

Con A:

concanavailin A, a protein from the jack bean (Canavalia ensiformis) that stimulates T cells to divide

DTH:

delayed-type hypersensitivity

FIV:

feline immunodeficiency virus

fMLP:

a tripeptide composed of formyl-methionine, leucine, and phenylalanine, which is chemotactic and promotes inflammation

HPA:

hypothalamic–pituitary–adrenal axis

IFN-α:

interferon alpha

IFN-γ:

interferon gamma

IgM:

immunoglobulin of the IgM type

IL:

interleukin

IL-1:

interleukin 1

IL-2:

interleukin 2

IL-12:

interleukin 12

i.c.v.:

intracerebral vascular

i.p.:

intraperitoneal

LPS:

lipopolysaccharide, a component of the outer membrane of gram-negative bacteria that has endotoxic activity and can lead to a sepsis syndrome

Mitogen:

a substance that causes lymphocytes to divide without ligating their antigen receptors

NK:

natural killer (cells or activity)

s.c.:

subcutaneous

Th1 :

T helper type 1 cells

Th2 :

T helper type 2 cells

TNF-α:

tumor necrosis factor alpha, a cytokine that induces widespread inflammatory changes and symptoms of sepsis

References

  • Allison JP (1994) CD28–B7 interactions in T-cell activation. Curr Opin Immunol 6:414–419

    Article  PubMed  CAS  Google Scholar 

  • Alonzo NC, Bayer BM (2002) Opioids immunology and host defenses of intravenous drug abusers. Infect Dis Clinic N Am 16:553–569

    Article  Google Scholar 

  • Barr MC, Huitron-Resendiz S, Sanchez-Alavez M, Hendriksen SJ, Phillips TR (2003) Escalating morphine exposures followed by withdrawal in feline immunodeficiency virus-infected cats: a model for HIV infection in chronic opiate abusers. Drug Alcohol Depend 72:141–149

    Article  PubMed  CAS  Google Scholar 

  • Bayer BM, Brehio RM, Ding XZ, Hernandez MC (1994) Enhanced susceptibility of the immune system to stress in morphine-tolerant rats. Brain Behav Immun 8:173–184

    Article  PubMed  CAS  Google Scholar 

  • Bhargava HN, Thomas PT, Thorat S, House RV (1994) Effects of morphine tolerance and abstinence on cellular immune function. Brain Res 642:1–10

    Article  PubMed  CAS  Google Scholar 

  • Bryant HU, Roudebush RE (1990) Suppressive effects of morphine pellet imlants on in vivo parameters of immune function. J Pharmacol Exp Ther 255:410–414

    PubMed  CAS  Google Scholar 

  • Bryant HU, Bernton EW, Holaday JW (1987) Immunosuppressive effects of chronic morphine treatment in mice. Life Sci 41:1731–1738

    Article  PubMed  CAS  Google Scholar 

  • Bussiere JL, Adler MW, Rogers TJ, Eisenstein TK (1993) Cytokine reversal of morphine-induced suppression of the antibody response. J Pharmacol Exp Ther 264:591–597

    PubMed  CAS  Google Scholar 

  • Carr DJJ, France CP (1993) Immune alterations in morphine-treated Rhesus monkeys. J Pharmacol Exp Ther 267:9–15

    PubMed  CAS  Google Scholar 

  • Carr DJ, Rogers TJ, Weber RJ (1996) The relevance of opioids and opioid receptors on immunocompetence and immune homeostasis. Proc Soc Exp Biol Med 213:248–257

    PubMed  CAS  Google Scholar 

  • Casellas AM, Guardiola H, Renaud FL (1991) Inhibition by opioids of phagocytosis in peritoneal macrophages. Neuropeptides 18:35–40

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (2005) In: HIV/AIDS surveillance report. US Dept. of Health and Human Services, Atlanta

  • Chuang LF, Killam KF Jr, Chuang RY (1993) Opioid dependency and T-helper functions in Rhesus monkey. In Vivo 7:159–166

    PubMed  CAS  Google Scholar 

  • Cuff CM, Packer BJ, Rogers TJ (1989) A further characterization of Candida albicans-induced suppressor B-cell activity. Immunology 68:80–86

    PubMed  CAS  Google Scholar 

  • Dafny N, Pellis NR (1986) Evidence that opiate addiction is in part an immune response. Destruction of the immune system by irradiation-altered opiate withdrawal. Neuropharmacology 25:815–818

    Article  PubMed  CAS  Google Scholar 

  • Donahoe RM, Byrd LD, McClure HM, Fultz P, Brantley M, Marsteller F, Ansari AA, Wenzel D, Aceto M (1993) Consequences of opiate-dependency in a monkey model of AIDS. Adv Exp Med Biol 335:21–28

    PubMed  CAS  Google Scholar 

  • Dougherty PM, Harper C, Dafny N (1986) The effect of alpha-interferon, cyclosporine A, and radiation-induced immune suppression on morphine-induced hypothermia and tolerance. Life Sci 39:2191–2197

    Article  PubMed  CAS  Google Scholar 

  • Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K (2002) Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 196:1645–1651

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein TK (2001) Implications of Salmonella-induced nitric oxide (NO) for host defense and vaccines: NO, an antimicrobial, antitumor, immunosuppressive and immunoregulatory molecule. Microbes Infect 3:1223–1231

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein TK, Hilburger ME (1998) Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations. J Neuroimmunol 83:36–44

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein TK, Hilburger ME, Lawrence DMP (1996) Immunomodulation by morphine and other opioids. In: Friedman H, Klein TW, Specter S (eds) Drugs of abuse, immunity and infections. CRC Press, Boca Raton, pp 103–120

    Google Scholar 

  • Feng P, Meissler JJ Jr, Adler MW, Eisenstein TK (2005a) Morphine withdrawal sensitizes mice to lipopolysaccharide: elevated TNF-alpha and nitric oxide with decreased IL-12. J Neuroimmunol 164:57–65

    Article  PubMed  CAS  Google Scholar 

  • Feng P, Wilson QM, Meissler JJ Jr, Adler MW, Eisenstein TK (2005b) Increased sensitivity to Salmonella enterica serovar Typhimurium infection in mice undergoing withdrawal from morphine is associated with suppression of interleukin-12. Infect Immun 73:7953–7959

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Flores R, Weber RJ (1999) Opioids, opioid receptors, and the immune system. In: Plotnikoff NP, Faith RE, Murgo AJ, Good RA (eds) Cytokines, stress and immunity. CRC Press, Boca Raton, pp 281–314

    Google Scholar 

  • Govitrapong P, Suttitum T, Kotchabhakdi N, Uneklabh T (1998) Alterations of immune functions in heroin addicts and heroin withdrawal subjects. J Pharmacol Exp Ther 286:883–889

    PubMed  CAS  Google Scholar 

  • Hall DM, Suo J-L, Weber RJ (1998) Opioid mediated effects on the immune system: sympathetic nervous system involvement. J Neuroimmunol 83:29–35

    Article  PubMed  CAS  Google Scholar 

  • Hilburger ME, Adler MW, Rogers TJ, Eisenstein TK (1997a) Morphine alters macrophage and lymphocyte populations in the spleen and peritoneal cavity. J Neuroimmunol 80:106–114

    Article  PubMed  CAS  Google Scholar 

  • Hilburger ME, Adler MW, Truant AL, Meissler JJ Jr, Satishchandran V, Rogers TJ, Eisenstein TK (1997b) Morphine induces sepsis in mice. J Infect Dis 176:183–188

    Article  PubMed  CAS  Google Scholar 

  • House SD, Mao X, Wu GD, Espinelli D, Li WX, Chang SL (2001) Chronic morphine potentiates the inflammatory response by disrupting interleukin-1β modulation of the hypothalamic–pituitary–adrenal axis. J Neuroimmunol 118:227–285

    Article  Google Scholar 

  • Kelschenbach J, Barke RA, Roy S (2005) Morphine withdrawal contributes to Th cell differentiation by biasing cells toward the Th2 lineage. J Immunol 175:2655–2665

    PubMed  CAS  Google Scholar 

  • King CL, Stupi RJ, Craighead N, June CH, Thyphronitis G (1995) CD28 activation promotes Th2 subset differentiation by human CD4+ cells. Eur J Immunol 25:587–595

    Article  PubMed  CAS  Google Scholar 

  • Lázaro MI, Tomassini N, González I, Renaud FL (2000) Reversibility of morphine effects on phagocytosis by murine macrophages. Drug Alcohol Depend 58:159–164

    Article  PubMed  Google Scholar 

  • McCarthy L, Wetzel M, Sliker J, Eisenstein TK, Rogers TJ (2001) Opioids, opioid receptors, and the immune response. Drug Alcohol Depend 62:111–123

    Article  PubMed  CAS  Google Scholar 

  • McVaugh W, Lawrence B, Kulkarni A, Pizzini R, Van Buren C, Rudolph F, Wolinsky I, Dafny N (1989) Suppression of opiate withdrawal by cyclosporin A and dietary modification. Life Sci 44:977–983

    Article  PubMed  CAS  Google Scholar 

  • Mellon RD, Bayer BM (1998) Evidence for central opioid receptors in the immunomodulatory effects of morphine: review of potential mechanism(s) of action. J Neuroimmunol 83:19–28

    Article  PubMed  CAS  Google Scholar 

  • Molitor TW, Morilla A, Risdahl JM, Murtaugh MP, Chao CC, Peterson PK (1992) Chronic morphine administration impairs cell-mediated immune responses in swine. J Pharmacol Exp Ther 260:581–586

    PubMed  CAS  Google Scholar 

  • Ocasio FM, Jiang Y, House SD, Chang SL (2004) Chronic morphine accelerates the progression of lipopolysaccharide-induced sepsis to septic shock. J Neuroimmunol 149:90–100

    Article  PubMed  CAS  Google Scholar 

  • Pacifici R, di Carlo S, Bacosi A, Zuccaro P (1993) Macrophage functions in drugs of abuse-treated mice. Int J Immunopharmacol 15:711–716

    Article  PubMed  CAS  Google Scholar 

  • Pellis NR, Harper C, Dafny N (1986) Suppression of the induction of delayed hypersensitivity in rats by repetitive morphine treatments. Exp Neurol 93:92–97

    Article  PubMed  CAS  Google Scholar 

  • Pellis NR, Kletzly NE, Dougherty PM, Aronowski J, Dafny N (1987) Participation of lymphoid cells in the withdrawal syndrome of opiate dependent rats. Life Sci 40:1589–1593

    Article  PubMed  CAS  Google Scholar 

  • Peterson PK, Molitor TW, Chao CC (1998) The opioid-cytokine connection. J Neuroimmunol 83:63–69

    Article  PubMed  CAS  Google Scholar 

  • Rahim RT, Meissler JJ Jr, Cowan A, Rogers TJ, Geller EB, Gaughan J, Adler MW, Eisenstein TK (2001) Administration of mu-, kappa- or delta2-receptor agonists via osmotic minipumps suppresses murine splenic antibody responses. Int Immunopharm 1:2001–2009

    Article  PubMed  CAS  Google Scholar 

  • Rahim RT, Adler MW, Meissler JJ Jr, Cowan A, Rogers TJ, Geller EB, Eisenstein TK (2002) Abrupt or precipitated withdrawal from morphine induces immunosuppression. J Neuroimmunol 127:88–95

    Article  PubMed  CAS  Google Scholar 

  • Rahim RT, Meissler JJ Jr, Zhang L, Adler MW, Rogers TJ, Eisenstein TK (2003) Withdrawal from morphine in mice suppresses splenic macrophage function, cytokine production, and costimulatory molecules. J Neuroimmunol 144:16–27

    Article  PubMed  CAS  Google Scholar 

  • Rahim RT, Feng P, Meissler JJ Jr, Rogers TJ, Zhang L, Adler MW, Eisenstein TK (2004) Paradoxes of immunosuppression in mouse models of withdrawal. J Neuroimmunol 147:114–120

    Article  PubMed  CAS  Google Scholar 

  • Rahim RT, Meissler JJ Jr, Adler MW, Eisenstein TK (2005) Splenic macrophages and B-cells mediate immunosuppression following abrupt withdrawal from morphine. J Leukoc Biol 78:1185–1191

    Article  PubMed  CAS  Google Scholar 

  • Risdahl JM, Peterson PK, Molitor TW (1996) Opiates, infection and immunity. In: Friedman H, Klein TW, Specter S (eds) Drugs of abuse, immunity, and infections. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  • Roy S, Loh HH (1996) Effects of opioids on the immune system. Neurochem Res 21:1373–1384

    Article  Google Scholar 

  • Roy S, Charboneau RG, Barke RA (1999) Morphine synergizes with lipopolysaccharide in a chronic endotoxemia model. J Neuroimmunol 95:107–114

    Article  PubMed  CAS  Google Scholar 

  • Rulifson IC, Sperling AI, Fields PE, Fitch FW, Bluestone JA (1997) CD28 costimulation promotes the production of Th2 cytokines. J Immunol 158:658–665

    PubMed  CAS  Google Scholar 

  • Sharp BM, Roy S, Bidlack JM (1998) Evidence for opioid receptors on cells involved in host defense and the immune system. J Neuroimmunol 83:45–56

    Article  PubMed  CAS  Google Scholar 

  • Shavit Y, Terman GW, Lewis JW, Zane CJ, Gale RP, Liebeskind JC (1986) Effects of footshock stress and morphine on natural killer lymphocytes in rats: studies of tolerance and cross-tolerance. Brain Res 372:382–385

    Article  PubMed  CAS  Google Scholar 

  • Tomassini N, Renaud FL, Roy S, Loh HH (2003) Mu and delta receptors mediate morphine effects on phagocytosis by murine peritoneal macrophages. J Neuroimmunol 136:9–16

    Article  PubMed  CAS  Google Scholar 

  • Tomei EZ, Renaud FL (1997) Effect of morphine on Fc-mediated phagocytosis by murine macrophages in vitro. J Neuroimmunol 74:111–116

    Article  PubMed  CAS  Google Scholar 

  • Wang CQ, Li Y, Douglas SD, Wang X, Metzger DS, Zhang T, Ho WZ (2005) Morphine withdrawal enhances hepatitis C virus replicon expression. Am J Pathol 167:1189–1191

    PubMed  Google Scholar 

  • West JP, Lysle DT, Dykstra LA (1997) Tolerance development to morphine-induced alterations of immune status. Drug Alcohol Depend 46:147–157

    Article  PubMed  CAS  Google Scholar 

  • West JP, Dykstra LA, Lysle DT (1999) Immunomodulatory effects of morphine withdrawal in the rat are time dependent and reversible by clonidine. Psychopharmacology 146:320–327

    Article  PubMed  CAS  Google Scholar 

  • Wybran J, Appelboom T, Famaey J-P, Govaerts A (1979) Suggestive evidence for receptors for morphine and methionine–enkephalin on normal human blood T lymphocytes. J Immunol 123:1068–1070

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institute of Drug Abuse grants DA14223, DA11134, DA13429 and DA06650. The authors thank Dr. Martin W. Adler for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toby K. Eisenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenstein, T.K., Rahim, R.T., Feng, P. et al. Effects of Opioid Tolerance and Withdrawal on the Immune System. Jrnl Neuroimmune Pharm 1, 237–249 (2006). https://doi.org/10.1007/s11481-006-9019-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-006-9019-1

Key words

Navigation