Skip to main content

Advertisement

Log in

Effect of Morphine on the Neuropathogenesis of SIVmac Infection in Indian Rhesus Macaques

  • Original Article
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Morphine is known to prevent the development of cell-mediated immune (CMI) responses and enhance expression of the CCR5 receptor in monocyte macrophages. We undertook a study to determine the effect of morphine on the neuropathogenesis and immunopathogenesis of simian immunodeficiency virus (SIV) infection in Indian Rhesus Macaques. Hypothetically, the effect of morphine would be to prevent the development of CMI responses to SIV and to enhance the infection in macrophages. Sixteen Rhesus Macaques were divided into three experimental groups: M (morphine only, n = 5), VM (morphine + SIV, n = 6), and V (SIV only, n = 5). Animals in groups M and VM were given 2.5 mg/kg of morphine sulfate, four times daily, for up to 59 weeks. Groups VM and V were inoculated with SIVmacR71/17E 26 weeks after the beginning of morphine administration. Morphine prevented the development of enzyme-linked immunosorbent spot-forming cell CMI responses in contrast to virus control animals, all of which developed CMI. Whereas morphine treatment had no effect on viremia, cerebrospinal fluid viral titers or survival over the time course of the study, the drug was associated with a tendency for greater build-up of virus in the brains of infected animals. Histopathological changes in the brains of animals that developed disease were of a demyelinating type in the VM animals compared to an encephalitic type in the V animals. This difference may have been associated with the immunosuppressive effect of the drug in inhibiting CMI responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Alcabes P, Friedland G (1995) Injection drug use and human immunodeficiency virus infection. Clin Infect Dis 20:1467–1479

    PubMed  CAS  Google Scholar 

  • Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Mothe BR, Sidney J, Jing P, Dzuris JL, Liebl ME, Vogel TU, O’Connor DH, Wang X, Wussow MC, Thomson JA, Altman JD, Watkins DI, Sette A (2001) CD8(+) lymphocytes from simian immunodeficiency virus-infected Rhesus Macaques recognize 14 different epitopes bound by the major histocompatibility complex class I molecule mamu-A*01: implications for vaccine design and testing. J Virol 75:738–749

    Article  PubMed  CAS  Google Scholar 

  • Ancuta P, Kunstman KJ, Autissier P, Zaman T, Stone D, Wolinsky SM, Gabuzda D (2006) CD16+ monocytes exposed to HIV promote highly efficient viral replication upon differentiation into macrophages and interaction with T cells. Virology 344:267–276

    Article  PubMed  CAS  Google Scholar 

  • Berman NE, Raymond LA, Warren KA, Raghavan R, Joag SV, Narayan O, Cheney PD (1998) Fractionator analysis shows loss of neurons in the lateral geniculate nucleus of macaques infected with neurovirulent simian immunodeficiency virus. Neuropathol Appl Neurobiol 24:44–52

    Article  PubMed  CAS  Google Scholar 

  • Berman NE, Marcario JK, Yong C, Raghavan R, Raymond LA, Joag SV, Narayan O, Cheney PD (1999) Microglial activation and neurological symptoms in the SIV model of NeuroAIDS: association of MHC-II and MMP-9 expression with behavioral deficits and evoked potential changes. Neurobiol Dis 6:486–498

    Article  PubMed  CAS  Google Scholar 

  • Bissel SJ, Wang G, Trichel AM, Murphey-Corb M, Wiley CA (2006) Longitudinal analysis of monocyte/macrophage infection in simian immunodeficiency virus-infected, CD8+ T-cell-depleted macaques that develop lentiviral encephalitis. Am J Pathol 168:1553–1569

    Article  PubMed  CAS  Google Scholar 

  • Budka H (1986) Multinucleated giant cells in brain: a hallmark of the acquired immune deficiency syndrome (AIDS). Acta Neuropathol (Berl) 69:253–258

    Article  CAS  Google Scholar 

  • Budka H (1991) Neuropathology of human immunodeficiency virus infection. Brain Pathol 1:163–175

    Article  PubMed  CAS  Google Scholar 

  • Carruth LM, Zink MC, Tarwater PM, Miller MD, Li M, Queen LA, Mankowski JL, Shen A, Siliciano RF, Clements JE (2005) SIV-specific T lymphocyte responses in PBMC and lymphoid tissues of SIV-infected pigtailed macaques during suppressive combination antiretroviral therapy. J Med Primatol 34:109–121

    Article  PubMed  CAS  Google Scholar 

  • CDC (2002) Estimated numbers of diagnoses of HIV/AIDS, by year of diagnosis and selected characteristics of persons, 1999–2002. HIV/AIDS Surveill Rep 10

  • Chen Z, Zhou P, Ho DD, Landau NR, Marx PA (1997) Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry. J Virol 71:2705–2714

    PubMed  CAS  Google Scholar 

  • Chuang LF, Killam KF Jr, Chuang RY (1993) Opioid dependency and T-helper cell functions in Rhesus monkey. In Vivo 7:159–166

    PubMed  CAS  Google Scholar 

  • Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7:75–83

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW, Lee SC, Hatch W, Mattiace LA, Brosnan CF, Lyman WD (1994) Macrophages and microglia in HIV-related CNS neuropathology. Res Publ Assoc Res Nerv Ment Dis 72:99–118

    PubMed  CAS  Google Scholar 

  • Donahoe RM (2004) Multiple ways that drug abuse might influence AIDS progression: clues from a monkey model. J Neuroimmunol 147:28–32

    Article  PubMed  CAS  Google Scholar 

  • Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673

    Article  PubMed  CAS  Google Scholar 

  • Guo CJ, Li Y, Tian S, Wang X, Douglas SD, Ho WZ (2002) Morphine enhances HIV infection of human blood mononuclear phagocytes through modulation of beta-chemokines and CCR5 receptor. J Investig Med 50:435–442

    Article  PubMed  CAS  Google Scholar 

  • Hatsukari I, Hitosugi N, Dinda A, Singhal PC (2006) Morphine modulates monocyte-macrophage conversion phase. Cell Immunol 239:41–48

    Article  PubMed  CAS  Google Scholar 

  • Hofmann-Lehmann R, Swenerton RK, Liska V, Leutenegger CM, Lutz H, McClure HM, Ruprecht RM (2000) Sensitive and robust one-tube real-time reverse transcriptase-polymerase chain reaction to quantify SIV RNA load: comparison of one- versus two-enzyme systems. AIDS Res Hum Retrovir 16:1247–1257

    Article  PubMed  CAS  Google Scholar 

  • Joag SV, Adany I, Li Z, Foresman L, Pinson DM, Wang C, Stephens EB, Raghavan R, Narayan O (1997) Animal model of mucosally transmitted human immunodeficiency virus type 1 disease: intravaginal and oral deposition of simian/human immunodeficiency virus in macaques results in systemic infection, elimination of CD4+ T cells, and AIDS. J Virol 71:4016–4023

    PubMed  CAS  Google Scholar 

  • Johnson JK, Warren KA, Berman NE, Narayan O, Stephens EB, Joag SV, Raghavan R, Marcario JK, Cheney PD (2004) Manifestations of SIV-induced ocular pathology in macaque monkeys. J NeuroAIDS 2:1–13

    PubMed  CAS  Google Scholar 

  • Kalams SA, Walker BD (1994) The cytotoxic T-lymphocyte response in HIV-1 infection. Clin Lab Med 14:271–299

    PubMed  CAS  Google Scholar 

  • Kirchhoff F, Pohlmann S, Hamacher M, Means RE, Kraus T, Uberla K, Di Marzio P (1997) Simian immunodeficiency virus variants with differential T-cell and macrophage tropism use CCR5 and an unidentified cofactor expressed in CEMx174 cells for efficient entry. J Virol 71:6509–6516

    PubMed  CAS  Google Scholar 

  • Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, Janotta F, Aksamit A, Martin MA, Fauci AS (1986) Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, Borkowsky W, Farthing C, Ho DD (1994) Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68:4650–4655

    PubMed  CAS  Google Scholar 

  • Kumar R, Orsoni S, Norman L, Verma AS, Tirado G, Giavedoni LD, Staprans S, Miller GM, Buch SJ, Kumar A (2006) Chronic morphine exposure causes pronounced virus replication in cerebral compartment and accelerated onset of AIDS in SIV/SHIV-infected Indian Rhesus Macaques. Virology 354:192–206

    Article  PubMed  CAS  Google Scholar 

  • Lane JH, Sasseville VG, Smith MO, Vogel P, Pauley DR, Heyes MP, Lackner AA (1996) Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J Neurovirol 2:423–432

    PubMed  CAS  Google Scholar 

  • Loffredo JT, Sidney J, Wojewoda C, Dodds E, Reynolds MR, Napoe G, Mothe BR, O’Connor DH, Wilson NA, Watkins DI, Sette A (2004) Identification of seventeen new simian immunodeficiency virus-derived CD8+ T cell epitopes restricted by the high frequency molecule, Mamu-A*02, and potential escape from CTL recognition. J Immunol 173:5064–5076

    PubMed  CAS  Google Scholar 

  • Mackay GA, Liu Z, Singh DK, Smith MS, Mukherjee S, Sheffer D, Jia F, Adany I, Sun KH, Dhillon S, Zhuge W, Narayan O (2004) Protection against late-onset AIDS in macaques prophylactically immunized with a live simian HIV vaccine was dependent on persistence of the vaccine virus. J Immunol 173:4100–4107

    PubMed  CAS  Google Scholar 

  • Mankowski JL, Clements JE, Zink MC (2002) Searching for clues: tracking the pathogenesis of human immunodeficiency virus central nervous system disease by use of an accelerated, consistent simian immunodeficiency virus macaque model. J Infect Dis 186(Suppl 2):S199–S208

    Article  PubMed  Google Scholar 

  • Marcario JK, Raymond LA, McKiernan BJ, Foresman LL, Joag SV, Raghavan R, Narayan O, Cheney PD (1999a) Motor skill impairment in SIV-infected Rhesus Macaques with rapidly and slowly progressing disease. J Med Primatol 28:105–117

    PubMed  CAS  Google Scholar 

  • Marcario JK, Raymond LA, McKiernan BJ, Foresman LL, Joag SV, Raghavan R, Narayan O, Hershberger S, Cheney PD (1999b) Simple and choice reaction time performance in SIV-infected Rhesus Macaques. AIDS Res Hum Retrovir 15:571–583

    Article  PubMed  CAS  Google Scholar 

  • Marcario JK, Manaye KF, SantaCruz KS, Mouton PR, Berman NE, Cheney PD (2004) Severe subcortical degeneration in macaques infected with neurovirulent simian immunodeficiency virus. J Neurovirol 10:387–399

    Article  PubMed  CAS  Google Scholar 

  • Marx PA, Chen Z (1998) The function of simian chemokine receptors in the replication of SIV. Semin Immunol 10:215–223

    Article  PubMed  CAS  Google Scholar 

  • Navia BA, Cho ES, Petito CK, Price RW (1986) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19:525–535

    Article  PubMed  CAS  Google Scholar 

  • Petito CK, Cho ES, Lemann W, Navia BA, Price RW (1986) Neuropathology of acquired immunodeficiency syndrome (AIDS): an autopsy review. J Neuropathol Exp Neurol 45:635–646

    Article  PubMed  CAS  Google Scholar 

  • Raghavan R, Cheney PD, Raymond LA, Joag SV, Stephens EB, Adany I, Pinson DM, Li Z, Marcario JK, Jia F, Wang C, Foresman L, Berman NE, Narayan O (1999) Morphological correlates of neurological dysfunction in macaques infected with neurovirulent simian immunodeficiency virus. Neuropathol Appl Neurobiol 25:285–294

    Article  PubMed  CAS  Google Scholar 

  • Raymond LA, Wallace D, Berman NE, Marcario J, Foresman L, Joag SV, Raghavan R, Narayan O, Cheney PD (1998) Auditory brainstem responses in a Rhesus Macaque model of neuro-AIDS. J Neurovirol 4:512–520

    Article  PubMed  CAS  Google Scholar 

  • Raymond LA, Wallace D, Marcario JK, Raghavan R, Narayan O, Foresman LL, Berman NE, Cheney PD (1999) Motor evoked potentials in a Rhesus Macaque model of neuro-AIDS. J Neurovirol 5:217–231

    PubMed  CAS  Google Scholar 

  • Raymond LA, Wallace D, Raghavan R, Marcario JK, Johnson JK, Foresman LL, Joag SV, Narayan O, Berman NE, Cheney PD (2000) Sensory evoked potentials in SIV-infected monkeys with rapidly and slowly progressing disease. AIDS Res Hum Retrovir 16:1163–1173

    Article  PubMed  CAS  Google Scholar 

  • Riviere Y (1994) Virus-specific cytotoxic T lymphocyte responses in patients infected with the human immunodeficiency virus, HIV-1. Cell Mol Biol (Noisy-le-grand) 40(Suppl 1):45–48

    Google Scholar 

  • Roy S, Wang J, Charboneau R, Loh HH, Barke RA (2005) Morphine induces CD4+ T cell IL-4 expression through an adenylyl cyclase mechanism independent of the protein kinase A pathway. J Immunol 175:6361–6367

    PubMed  CAS  Google Scholar 

  • Selwyn PA, Alcabes P, Hartel D, Buono D, Schoenbaum EE, Klein RS, Davenny K, Friedland GH (1992) Clinical manifestations and predictors of disease progression in drug users with human immunodeficiency virus infection. N Engl J Med 327:1697–1703

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Carlos MP, Chuang LF, Torres JV, Doi RH, Chuang RY (2002) Methadone induces CCR5 and promotes AIDS virus infection. FEBS Lett 519:173–177

    Article  PubMed  CAS  Google Scholar 

  • Thorpe LE, Frederick M, Pitt J, Cheng I, Watts DH, Buschur S, Green K, Zorrilla C, Landesman SH, Hershow RC (2004) Effect of hard-drug use on CD4 cell percentage, HIV RNA level, and progression to AIDS-defining class C events among HIV-infected women. J Acquir Immune Defic Syndr 37:1423–1430

    Article  PubMed  CAS  Google Scholar 

  • Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, Rosenzweig M, Johnson RP, Desrosiers RC, Lackner AA (1998) Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280:427–431

    Article  PubMed  CAS  Google Scholar 

  • Veazey RS, Mansfield KG, Tham IC, Carville AC, Shvetz DE, Forand AE, Lackner AA (2000a) Dynamics of CCR5 expression by CD4(+) T cells in lymphoid tissues during simian immunodeficiency virus infection. J Virol 74:11001–11007

    Article  PubMed  CAS  Google Scholar 

  • Veazey RS, Tham IC, Mansfield KG, DeMaria M, Forand AE, Shvetz DE, Chalifoux LV, Sehgal PK, Lackner AA (2000b) Identifying the target cell in primary simian immunodeficiency virus (SIV) infection: highly activated memory CD4(+) T cells are rapidly eliminated in early SIV infection in vivo. J Virol 74:57–64

    Article  PubMed  CAS  Google Scholar 

  • Walker CM (1993) Non-cytolytic control of HIV replication by CD8+ T cells. Semin Immunol 5:195–201

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Barke RA, Charboneau R, Loh HH, Roy S (2003) Morphine negatively regulates interferon-gamma promoter activity in activated murine T cells through two distinct cyclic AMP-dependent pathways. J Biol Chem 278:37622–37631

    Article  PubMed  CAS  Google Scholar 

  • Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193:905–915

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the following people for their contributions to this work: Sarah Karina, Glaukia Cavalcanti and Kip Fogle for the behavioral training, data analysis, and injections; Heather Hudson and Darcy Griffin for the morphine/saline injections; Dr. Zhuang Li for necropsy services and injections; Dr. David Pinson for the pathological analyses; and Ian Edwards and James Rengel for the technical support. This work was supported by NIH grants DA12827, HD02528, and COBRE P20RR16443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Cheney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcario, J.K., Riazi, M., Adany, I. et al. Effect of Morphine on the Neuropathogenesis of SIVmac Infection in Indian Rhesus Macaques. J Neuroimmune Pharmacol 3, 12–25 (2008). https://doi.org/10.1007/s11481-007-9085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-007-9085-z

Keywords

Navigation