Skip to main content

Advertisement

Log in

Studies in the Modulation of Experimental Autoimmune Encephalomyelitis

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Experimental autoimmune encephalomyelitis (EAE), an experimental model for multiple sclerosis, can be induced through inoculation with several different central nervous system (CNS) proteins or peptides. Modulation of EAE, resulting in either protection from EAE or enhancement of EAE, can also be accomplished through either vaccination or DNA immunization with molecular mimics of self-CNS proteins. Previously published data on this method of EAE modulation will be reviewed. New data is presented, which demonstrates that EAE can also be modulated through the administration of the β-(1,3)-d-glucan, curdlan. Dendritic cells stimulated by curdlan are involved in the differentiation of the interleukin-17 producing subset of CD4+ T cells that are recognized effector cells in EAE. Using two different systems to study the effects of curdlan on EAE, it was found that curdlan increased the incidence of EAE and/or the severity of the disease course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV, Matthieu J-M, Baker D (1994) Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 153:4349–4356

    CAS  PubMed  Google Scholar 

  • Aranami T, Yamamura T (2008) Th17 Cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int 57:115–120

    Article  CAS  PubMed  Google Scholar 

  • Barnett LA, Whitton JL, Wada Y, Fujinami RS (1993) Enhancement of autoimmune disease using recombinant vaccinia virus encoding myelin proteolipid protein [published erratum appears in J Neuroimmunol 48:120, 1993]. J Neuroimmunol 44:15–25

    Article  CAS  PubMed  Google Scholar 

  • Barnett LA, Whitton JL, Wang LY, Fujinami RS (1996) Virus encoding an encephalitogenic peptide protects mice from experimental allergic encephalomyelitis. J Neuroimmunol 64:163–173

    Article  CAS  PubMed  Google Scholar 

  • Fritz RB, McFarlin DE (1989) Encephalitogenic epitopes of myelin basic protein. Chem Immunol 46:101–125

    Article  CAS  PubMed  Google Scholar 

  • Fujinami RS (2001) Can virus infections trigger autoimmune disease? J Autoimmun 16:229–234

    Article  CAS  PubMed  Google Scholar 

  • Garren H, Ruiz PJ, Watkins TA, Fontoura P, Nguyen L-VT, Estline ER, Hirschberg DL, Steinman L (2001) Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 15:15–22

    Article  CAS  PubMed  Google Scholar 

  • Goverman J, Perchellet A, Huseby ES (2005) The role of CD8+ T cells in multiple sclerosis and its animal models. Curr Drug Targets Inflamm Allergy 4:239–245

    Article  CAS  PubMed  Google Scholar 

  • Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SCM, Geijtenbeek TBH (2009) Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nat Immunol 10:203–213

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter HH, Toyka KV, Tary-Lehmann M, Lehmann PV (2007) Kinetics and organ distribution of IL-17-producing CD4 cells in proteolipid protein 139-151 peptide-induced experimental autoimmune encephalomyelitis of SJL mice. J Immunol 178:1372–1378

    CAS  PubMed  Google Scholar 

  • Huseby ES, Liggitt D, Brabb T, Schnabel B, Öhlén C, Goverman J (2001) A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J Exp Med 194:669–676

    Article  CAS  PubMed  Google Scholar 

  • Iezzi G, Sonderegger I, Ampenberger F, Schmitz N, Marsland BJ, Kopf M (2009) CD40-CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. Proc Natl Acad Sci USA 106:876–881

    Article  PubMed  CAS  Google Scholar 

  • Ji Q, Goverman J (2007) Experimental autoimmune encephalomyelitis mediated by CD8+ T cells. Ann N Y Acad Sci 1103:157–166

    Article  CAS  PubMed  Google Scholar 

  • Johnson AJ, Suidan GL, McDole J, Pirko I (2007) The CD8 T cell in multiple sclerosis: suppressor cell or mediator of neuropathology? Int Rev Neurobiol 79:73–97

    Article  CAS  PubMed  Google Scholar 

  • Kim S-K, Cornberg M, Wang XZ, Chen HD, Selin LK, Welsh RM (2005) Private specificities of CD8 T cell responses control patterns of heterologous immunity. J Exp Med 201:523–533

    Article  CAS  PubMed  Google Scholar 

  • Klemann C, Je Raveney B, Oki S, Yamamura T (2009) Retinoid signals and Th17-mediated pathology. Jpn J Clin Immunol 32:20–28

    Article  CAS  Google Scholar 

  • Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  Google Scholar 

  • Laroche C, Michaud P (2007) New developments and prospective applications for β (1, 3) glucans. Recent Pat Biotechnol 1:59–73

    Article  CAS  PubMed  Google Scholar 

  • LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, Reis e Sousa C (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8:630–638

    Article  CAS  PubMed  Google Scholar 

  • Libbey JE, Fujinami RS (2009) Potential triggers of MS. In: Martin R, Lutterotti A (eds) Molecular Basis of Multiple Sclerosis. The Immune System. Series: Results and Problems in Cell Differentiation. Springer, Berlin, epub January 8, 2009.

  • McCoy L, Tsunoda I, Fujinami RS (2006) Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity 39:9–19

    Article  CAS  PubMed  Google Scholar 

  • McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1→3)-β-D-glucans. Appl Microbiol Biotechnol 68:163–173

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M (2007) Effectors of demyelination and remyelination in the CNS: implications for multiple sclerosis. Brain Pathol 17:219–229

    Article  CAS  PubMed  Google Scholar 

  • Ruiz PJ, Garren H, Ruiz IU, Hirschberg DL, Nguyen L-VT, Karpuj MV, Cooper MT, Mitchell DJ, Fathman CG, Steinman L (1999) Suppressive immunization with DNA encoding a self-peptide prevents autoimmune disease: modulation of T cell costimulation. J Immunol 162:3336–3341

    CAS  PubMed  Google Scholar 

  • Ruland J (2008) CARD9 signaling in the innate immune response. Ann N Y Acad Sci 1143:35–44

    Article  CAS  PubMed  Google Scholar 

  • Sedzik J (2008) Myelin sheaths and autoimmune response induced by myelin proteins and alphaviruses. I Physicochemical background. Curr Med Chem 15:1899–1910

    Article  CAS  PubMed  Google Scholar 

  • Selin LK, Cornberg M, Brehm MA, Kim SK, Calcagno C, Ghersi D, Puzone R, Celada F, Welsh RM (2004) CD8 memory T cells: cross-reactivity and heterologous immunity. Semin Immunol 16:335–347

    Article  CAS  PubMed  Google Scholar 

  • Selin LK, Brehm MA, Naumov YN, Cornberg M, Kim S-K, Clute SC, Welsh RM (2006) Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol Rev 211:164–181

    Article  CAS  PubMed  Google Scholar 

  • Sobel RA, Greer JM, Kuchroo VK (1994) Minireview: autoimmune responses to myelin proteolipid protein. Neurochem Res 19:915–921

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H, Raine CS (2001) Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 166:7579–7587

    CAS  PubMed  Google Scholar 

  • Theil DJ, Libbey JE, Rodriguez F, Whitton JL, Tsunoda I, Derfuss TJ, Fujinami RS (2008) Targeting myelin proteolipid protein to the MHC class I pathway by ubiquitination modulates the course of experimental autoimmune encephalomyelitis. J Neuroimmunol 204:92–100

    Article  CAS  PubMed  Google Scholar 

  • Theil DJ, Tsunoda I, Rodriguez F, Whitton JL, Fujinami RS (2001) Viruses can silently prime for and trigger central nervous system autoimmune disease. J NeuroVirol 7:220–227

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Fujinami RS (1996) Two models for multiple sclerosis: experimental allergic encephalomyelitis and Theiler’s murine encephalomyelitis virus. J Neuropathol Exp Neurol 55:673–686

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Kuang L-Q, Tolley ND, Whitton JL, Fujinami RS (1998) Enhancement of experimental allergic encephalomyelitis (EAE) by DNA immunization with myelin proteolipid protein (PLP) plasmid DNA. J Neuropathol Exp Neurol 57:758–767

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda I, Libbey JE, Fujinami RS (2007) Sequential polymicrobial infections lead to CNS inflammatory disease: possible involvement of bystander activation in heterologous immunity. J Neuroimmunol 188:22–33

    Article  CAS  PubMed  Google Scholar 

  • Tuohy VK (1994) Peptide determinants of myelin proteolipid protein (PLP) in autoimmune demyelinating disease: a review. Neurochem Res 19:935–944

    Article  CAS  PubMed  Google Scholar 

  • Veldhoen M, Hocking RJ, Flavell RA, Stockinger B (2006) Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Wang L-Y, Fujinami RS (1997) Enhancement of EAE and induction of autoantibodies to T-cell epitopes in mice infected with a recombinant vaccinia virus encoding myelin proteolipid protein. J Neuroimmunol 75:75–83

    Article  CAS  PubMed  Google Scholar 

  • Wang L-Y, Theil DJ, Whitton JL, Fujinami RS (1999) Infection with a recombinant vaccinia virus encoding myelin proteolipid protein causes suppression of chronic relapsing-remitting experimental allergic encephalomyelitis. J Neuroimmunol 96:148–157

    Article  CAS  PubMed  Google Scholar 

  • Welsh RM, Kim SK, Cornberg M, Clute SC, Selin LK, Naumov YN (2006) The privacy of T cell memory to viruses. Curr Top Microbiol Immunol 311:117–153

    Article  CAS  PubMed  Google Scholar 

  • Whitton JL, Fujinami RS (1999) Viruses as triggers of autoimmunity: facts and fantasies. Curr Opin Microbiol 2:392–397

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Li X-K, Funeshima-Fuji N, Kimura H, Matsumoto Y, Isaka Y, Takahara S (2009) Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol 9:575–581

    Article  CAS  PubMed  Google Scholar 

  • Yoshitomi H, Sakaguchi N, Kobayashi K, Brown GD, Tagami T, Sakihama T, Hirota K, Tanaka S, Nomura T, Miki I, Gordon S, Akira S, Nakamura T, Sakaguchi S (2005) A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med 201:949–960

    Article  CAS  PubMed  Google Scholar 

  • Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard JB (1986) T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324:258–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We wish to thank Nikki J. Kirkman, BS, Faris Hasanovic, BS, Daniel J. Doty, and Krystal D. Porter, BS, for the excellent technical assistance. We wish to acknowledge Kathleen Borick for the outstanding preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Fujinami.

Additional information

This work was supported by NIH grant 1P01AI058105.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libbey, J.E., Tsunoda, I. & Fujinami, R.S. Studies in the Modulation of Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 5, 168–175 (2010). https://doi.org/10.1007/s11481-010-9215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-010-9215-x

Keywords

Navigation