Skip to main content

Advertisement

Log in

Chronological Age Impacts Immunotherapy and Monocyte Uptake Independent of Amyloid Load

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

One vexing issue in biomedical research is the failure of many therapies to translate from success in animal models to effective treatment of human disease. One significant difference between the animal models and the human disease is the age of the subject. Cancer, stroke and Alzheimer’s occur mainly in humans beyond the 75% mean survival age, while most mouse models use juvenile or young adult animals. Here we compare two mouse models of amyloid deposition, the Tg2576 APP model and the more aggressive APP+PS1 model in which a mutant presenilin1 gene is overexpressed with Tg2576. Middle-aged APP+PS1 mice and aged APP mice have similar degrees of amyloid pathology with a few differences that may partially explain some of the differences between the two age cohorts. The first study evaluated production of microhemorrhage by a monoclonal anti-Aβ antibody. We found that in spite of greater amyloid clearance in middle-aged APP+PS1 mice than aged APP mice, the microhemorrhage only developed in old animals. This argues that preclinical studies of immunotherapy in young or middle-aged mice may not predict this potential liability in clinical trials. A second study evaluated the infiltration of systemically injected GFP labeled monocytes into the CNS. Here we find that infiltration is greater in aged mice than middle-aged mice, in spite of greater total Aß staining in the middle–aged animals. We conclude that preclinical studies should be conducted in aged animal models as well as young mice to better prepare for unintended consequences in the human trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543

    Article  PubMed  CAS  Google Scholar 

  • Alamed J, Wilcock DM, Diamond DM, Gordon MN, Morgan D (2006) Two-day radial-arm water maze learning and memory task; robust resolution of amyloid-related memory deficits in transgenic mice. NatProtoc 1:1671–1679

    CAS  Google Scholar 

  • Ashe KH, Zahs KR (2010) Probing the biology of Alzheimer’s disease in mice. Neuron 66:631–645

    Article  PubMed  CAS  Google Scholar 

  • Black RS, Sperling RA, Safirstein B, Motter RN, Pallay A, Nichols A, Grundman M (2010) A single ascending dose study of bapineuzumab in patients with Alzheimer disease. Alzheimer Dis Assoc Disord 24:198–203

    Article  PubMed  CAS  Google Scholar 

  • Boche D, Nicoll JA (2008) The role of the immune system in clearance of Abeta from the brain. Brain Pathol 18:267–278

    Article  PubMed  Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98:8850–8855

    Article  PubMed  CAS  Google Scholar 

  • Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin S (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383:710–713

    Article  PubMed  CAS  Google Scholar 

  • Finch CE (1990) Longevity, senescence and the genome. University of Chicago Press, Chicago

    Google Scholar 

  • Glorioso C, Sibille E (2011) Between destiny and disease: genetics and molecular pathways of human central nervous system aging. Prog Neurobiol 93:165–181

    Article  PubMed  CAS  Google Scholar 

  • Gordon MN, Holcomb LA, Jantzen PT, DiCarlo G, Wilcock D, Boyett KL, Connor K, Melachrino JO, O’Callaghan JP, Morgan D (2002) Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp Neurol 173:183–195

    Article  PubMed  CAS  Google Scholar 

  • Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S, Aguzzi A, Staufenbiel M, Mathews PM, Wolburg H, Heppner FL, Jucker M (2009) Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    Article  PubMed  CAS  Google Scholar 

  • Karlnoski RA, Rosenthal A, Kobayashi D, Pons J, Alamed J, Mercer M, Li Q, Gordon MN, Gottschall PE, Morgan D (2009) Suppression of amyloid deposition leads to long-term reductions in Alzheimer’s pathologies in Tg2576 mice. J Neurosci 29:4964–4971

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TB (2010) Global aging and the brain. Nutr Rev 68(Suppl 2):S65–S69

    Article  PubMed  Google Scholar 

  • Lebson L, Nash K, Kamath S, Herber D, Carty N, Lee DC, Li Q, Szekeres K, Jinwal U, Koren J, Dickey CA, Gottschall PE, Morgan D, Gordon MN (2010) Trafficking CD11b-positive blood cells deliver therapeutic genes to the brain of amyloid-depositing transgenic mice. J Neurosci 30:9651–9658

    Article  PubMed  CAS  Google Scholar 

  • Levites Y, Das P, Price RW, Rochette MJ, Kostura LA, McGowan EM, Murphy MP, Golde TE (2006) Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest 116:193–201

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Gordon M, Cao C, Ugen KE, Morgan D (2007) Improvement of a low pH antigen-antibody dissociation procedure for ELISA measurement of circulating anti-Abeta antibodies. BMC Neurosci 8:22.

    Google Scholar 

  • Malm TM, Koistinaho M, Parepalo M, Vatanen T, Ooka A, Karlsson S, Koistinaho J (2005) Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to beta-amyloid deposition in APP/PS1 double transgenic Alzheimer mice. Neurobiol Dis 18:134–142

    Article  PubMed  CAS  Google Scholar 

  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6Chi CCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553

    Article  PubMed  CAS  Google Scholar 

  • Morgan DG, Finch CE (1988) Dopaminergic changes in the basal ganglia. Ann NY Acad Sci 515:145–160

    Article  PubMed  CAS  Google Scholar 

  • Morgan DG, May PC, Finch CE (1987) Dopamine and serotonin systems in human and rodent brain: Effects of age and neurodegenerative disease. J Am Geriatr Soc 35:334–345

    PubMed  CAS  Google Scholar 

  • Morgan DG, May PC, Schneider EL, Rowe JW (1990) Age-related changes in synaptic neurochemistry. In: Handbook of the biology of aging. New York, Academic Press, pp. 219–254.

  • Pardridge WM (2009) Alzheimer’s disease drug development and the problem of the blood–brain barrier. Alzheimers Dement 5:427–432

    Article  PubMed  Google Scholar 

  • Pfeifer M, Boncristiano S, Bondolfi L, Stalder A, Deller T, Staufenbiel M, Mathews PM, Jucker M (2002) Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298:1379

    Article  PubMed  CAS  Google Scholar 

  • Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP, Holtzman DM, Bales KR, Gitter BD, May PC, Paul SM, DeMattos RB (2005) Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci 25:629–636

    Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  • Schroeter S, Khan K, Barbour R, Doan M, Chen M, Guido T, Gill D, Basi G, Schenk D, Seubert P, Games D (2008) Immunotherapy reduces vascular amyloid-beta in PDAPP mice. J Neurosci 28:6787–6793

    Article  PubMed  CAS  Google Scholar 

  • Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502

    Article  PubMed  CAS  Google Scholar 

  • Stalder AK, Ermini F, Bondolfi L, Krenger W, Burbach GJ, Deller T, Coomaraswamy J, Staufenbiel M, Landmann R, Jucker M (2005) Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J Neurosci 25:11125–11132

    Article  PubMed  CAS  Google Scholar 

  • Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, Morgan D (2004a) Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. JNeuroinflammation 1:24

    Article  Google Scholar 

  • Wilcock DM, Rojiani A, Rosenthal A, Levkowitz G, Subbarao S, Alamed J, Wilson D, Wilson N, Freeman MJ, Gordon MN, Morgan D (2004b) Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci 24:6144–6151

    Article  PubMed  CAS  Google Scholar 

  • Wilcock DM, Gordon MN, Morgan D (2006a) Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo red histochemical stain. NatProtoc 1:1591–1595

    CAS  Google Scholar 

  • Wilcock DM, Alamed J, Gottschall PE, Grimm J, Rosenthal A, Pons J, Ronan V, Symmonds K, Gordon MN, Morgan D (2006b) Deglycosylated anti-amyloid-beta antibodies eliminate cognitive deficits and reduce parenchymal amyloid with minimal vascular consequences in aged amyloid precursor protein transgenic mice. J Neurosci 26:5340–5346

    Article  PubMed  CAS  Google Scholar 

  • Wilcock DM, Jantzen PT, Li Q, Morgan D, Gordon MN (2007) Amyloid-beta vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid. Neuroscience 144:950–960

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Yang S, Luo H, Zeng L, Ye L, Lu Y (2006) Quantitative evaluation of monocyte transmigration into the brain following chemical opening of the blood–brain barrier in mice. Brain Res 1098:79–85

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of Interest

DM has consulted with the following pharmaceutical companies; Eisai, Forest, Merck, Pfizer (and Wyeth), Lundbeck, Baxter, Bristol-Myers-Squibb, NeurImmune, Bioarctic, Elan. JG and AR were employees of Rinat Neuroscience (now Rinat-Pfizer) when this work was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave Morgan.

Additional information

Drs. Li and Lebson contributed equally to this work as co-first authors.

Guarantors. D Morgan and MN Gordon

Support. This work was supported by AG 04418 and AG 18478 (to DM), and AG 15490 (to MNG). Antibody 2H6 was donated by Rinat Neuroscience under terms of an MTA, but all research funds to support this work were from NIH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Lebson, L., Lee, D.C. et al. Chronological Age Impacts Immunotherapy and Monocyte Uptake Independent of Amyloid Load. J Neuroimmune Pharmacol 7, 202–214 (2012). https://doi.org/10.1007/s11481-011-9329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-011-9329-9

Keywords

Navigation