Skip to main content
Log in

Dose-dependent Effects of Ladostigil on Microglial Activation and Cognition in Aged Rats

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The current study determined the effects of chronic treatment of aging rats with ladostigil, a cholinesterase (ChE) and monoamine oxidase (MAO) inhibitor, at doses of 1 and 8.5 mg/kg/day, on novel object recognition (NOR) and reference memory in the Morris water maze (MWM). A dose of (1 mg/kg/day) did not inhibit ChE or MAO but prevented the loss of NOR and reference memory in the MWM that occurs at 20.5 months of age. This anti-aging effect was associated with a reduction in the expression of CD11b, a marker of microglial activation, in the fornix and parietal cortex and restoration of microglial morphology to that in young adult rats. Ladostigil (8.5 mg/kg/day) inhibited brain ChE by ≈30 % and MAO A and B by 55–59 %, and had a similar, or greater effect than the low dose on microglia, but was less effective in preventing the decline in NOR. Ladostigil (8.5 mg/kg/day) may have caused too much cortical ChE inhibition and acetylcholine elevation at 16 months when NOR was intact. In support of this suggestion we showed that acute administration of ladostigil (8.5 mg/kg) worsened NOR at this age. However, at 20 months, when NOR was impaired and brain acetylcholine levels are 40 % below normal, ladostigil (8.5 mg/kg) reversed the memory deficit. Conclusion: Ladostigil (1 mg/kg/day) prevents the development of age-related memory deficits by a combination of immunomodulatory and antioxidant effects. A dose causing 30 % ChE inhibition is necessary in order to reverse existing memory deficits at 20 months of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggleton JP, Albasser MM, Aggleton DJ, Poirier GL, Pearce JM (2010) Lesions of the rat perirhinal cortex spare the acquisition of a complex configural visual discrimination yet impair object recognition. Behav Neurosci 124(1):55–68. doi:10.1037/a0018320

    Article  PubMed  Google Scholar 

  • Arivazhagan P, Ayusawa D, Panneerselvam C (2006) Protective efficacy of alpha-lipoic acid on acetylcholinesterase activity in aged rat brain regions. Rejuvenation Res 9(2):198–201. doi:10.1089/rej.2006.9.198

    Article  PubMed  CAS  Google Scholar 

  • Bar-Am O, Weinreb O, Amit T, Youdim MB (2009) The novel cholinesterase-monoamine oxidase inhibitor and antioxidant, ladostigil, confers neuroprotection in neuroblastoma cells and aged rats. J Mol Neurosci 37(2):135–145. doi:10.1007/s12031-008-9139-6

    Article  PubMed  CAS  Google Scholar 

  • Barnes CA, Meltzer J, Houston F, Orr G, McGann K, Wenk GL (2000) Chronic treatment of old rats with donepezil or galantamine: effects on memory, hippocampal plasticity and nicotinic receptors. Neuroscience 99:17–23

    Article  PubMed  CAS  Google Scholar 

  • Baxter MG (2010) “I’ve seen it all before”: explaining age-related impairments in object recognition. Theoretical comment on Burke et al. (2010). Behav Neurosci 124(5):706–709. doi:10.1037/a0021029

    Article  PubMed  Google Scholar 

  • Braida D, Paladini E, Griffini P, Lamperti M, Maggi A, Sala M (1996) An inverted U-shaped curve for heptylphysostigmine on radial maze performance in rats: comparison with other cholinesterase inhibitors. Eur J Pharmacol 302(1–3):13–20

    Article  PubMed  CAS  Google Scholar 

  • Braida D, Ottonello F, Sala M (2000) Eptastigmine improves eight-arm radial maze performance in aged rats. Pharmacol Res 42(4):299–304. doi:10.1006/phrs.2000.0706

    Article  PubMed  CAS  Google Scholar 

  • Brain P, Benton D (1979) The interpretation of physiological correlates of differential housing in laboratory rats. Life Sci 24:99–115

    Article  PubMed  CAS  Google Scholar 

  • Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learn Mem 17:5–11

    Article  PubMed  Google Scholar 

  • Bullock R, Dengiz A (2005) Cognitive performance in patients with Alzheimer's disease receiving cholinesterase inhibitors for up to 5 years. Int J Clin Pract 59:817–822

    Google Scholar 

  • Burke SN, Wallace JL, Hartzell AL, Nematollahi S, Plange K, Barnes CA (2011) Age-associated deficits in pattern separation functions of the perirhinal cortex: a cross-species consensus. Behav Neurosci 125(6):836–847. doi:10.1037/a0026238

    Article  PubMed  Google Scholar 

  • Butterfield DA, Reed TT, Perluigi M, De Marco C, Coccia R, Keller JN, Markesbery WR, Sultana R (2007) Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res 1148:243–248. doi:10.1016/j.brainres.2007.02.084

    Article  PubMed  CAS  Google Scholar 

  • Chang JY, Liu LZ (2000) Catecholamines inhibit microglial nitric oxide production. Brain Res Bull 52(6):525–530

    Article  PubMed  CAS  Google Scholar 

  • Collie A, Maruff P (2000) The neuropsychology of preclinical Alzheimer’s disease and mild cognitive impairment. Neurosci Biobehav Rev 24(3):365–374

    Article  PubMed  CAS  Google Scholar 

  • David R, Koulibaly M, Benoit M, Garcia R, Caci H, Darcourt J, Robert P (2008) Striatal dopamine transporter levels correlate with apathy in neurodegenerative diseases A SPECT study with partial volume effect correction. Clin Neurol Neurosurg 110(1):19–24. doi:10.1016/j.clineuro.2007.08.007

    Article  PubMed  Google Scholar 

  • Dunn N, Mullee M, Perry VH, Holmes C (2005) Association between dementia and infectious disease: evidence from a case-control study. Alzheimer disease and associated disorders 19:91–94

    Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Engelhart MJ, Geerlings MI, Meijer J, Kiliaan A, Ruitenberg A, van Swieten JC, Stijnen T, Hofman A, Witteman JC, Breteler MM (2004) Inflammatory proteins in plasma and the risk of dementia: the rotterdam study. Arch Neurol 61(5):668–672. doi:10.1001/archneur.61.5.668

    Article  PubMed  Google Scholar 

  • Ennaceur A (2010) One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res 215:244–254

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31(1):47–59

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Michalikova S, Bradford A, Ahmed S (2005) Detailed analysis of the behavior of Lister and Wistar rats in anxiety, object recognition and object location tasks. Behav Brain Res 159(2):247–266. doi:10.1016/j.bbr.2004.11.006

    Article  PubMed  CAS  Google Scholar 

  • Farlow M, Anand R, Messina J Jr, Hartman R, Veach J (2000) A 52-week study of the efficacy of rivastigmine in patients with mild to moderately severe Alzheimer’s disease. Eur Neurol 44(4):236–241

    Article  PubMed  CAS  Google Scholar 

  • Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S A 93(10):4765–4769

    Article  PubMed  CAS  Google Scholar 

  • Groner E, Ashani Y, Schorer-Apelbaum D, Sterling J, Herzig Y, Weinstock M (2007) The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by two series of novel carbamates. Mol Pharmacol 71(6):1610–1617. doi:10.1124/mol.107.033928

    Article  PubMed  CAS  Google Scholar 

  • Higgins GC, Beart PM, Shin YS, Chen MJ, Cheung NS, Nagley P (2010) Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimers Dis 20(Suppl 2):S453–S473. doi:10.3233/JAD-2010-100321

    PubMed  Google Scholar 

  • Hut RA, Van der Zee EA (2011) The cholinergic system, circadian rhythmicity, and time memory. Behav Brain Res 221(2):466–480. doi:10.1016/j.bbr.2010.11.039

    Article  PubMed  CAS  Google Scholar 

  • Hwang J, Hwang H, Lee HW, Suk K (2010) Microglia signaling as a target of donepezil. Neuropharmacology 58(7):1122–1129. doi:10.1016/j.neuropharm.2010.02.003

    Article  PubMed  CAS  Google Scholar 

  • Kaasinen V, Nagren K, Jarvenpaa T, Roivainen A, Yu M, Oikonen V, Kurki T, Rinne JO (2002) Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer’s disease. J Clin Psychopharmacol 22(6):615–620

    Article  PubMed  CAS  Google Scholar 

  • Kim JD, McCarter RJ, Yu BP (1996) Influence of age, exercise, and dietary restriction on oxidative stress in rats. Aging (Milano) 8(2):123–129

    CAS  Google Scholar 

  • Lamirault L, Guillou C, Thal C, Simon H (2003) (−)-9-Dehydrogalanthaminium bromide, a new cholinesterase inhibitor, enhances place and object recognition memory in young and old rats. Neurobiol Learn Mem 80(2):113–122

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H (2011) Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer’s disease. J Neural Transm 118(5):747–752. doi:10.1007/s00702-011-0607-8

    Article  PubMed  CAS  Google Scholar 

  • Maccioni RB, Rojo LE, Fernandez JA, Kuljis RO (2009) The role of neuroimmuno- modulation in Alzheimer’s disease. Ann N Y Acad Sci 1153:240–246. doi:10.1111/j.1749-6632.2008.03972.x

    Article  PubMed  CAS  Google Scholar 

  • Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P (2009) Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Ageing Res Rev 8(4):285–305. doi:10.1016/j.arr.2009.04.002

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Weinstock M, Youdim MB, Nagai M, Naoi M (2003) Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-(3R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neurosci Lett 341(3):233–236

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Ozaki E, Zhang B, Yang L, Yokoyama A, Takeda I, Maeda N, Sakanaka M, Tanaka J (2002) Effects of norepinephrine on rat cultured microglial cells that express alpha1, alpha2, beta1 and beta2 adrenergic receptors. Neuropharmacology 43(6):1026–1034

    Article  PubMed  CAS  Google Scholar 

  • Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26(3):349–354. doi:10.1016/j.neurobiolaging.2004.05.010

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Boucraut J, Hahnel C, Misgeld T, Wekerle H (1996) Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur J Neurosci 8(12):2582–2590

    Article  PubMed  CAS  Google Scholar 

  • Nicolle MM, Gonzalez J, Sugaya K, Baskerville KA, Bryan D, Lund K, Gallagher M, McKinney M (2001) Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience 107(3):415–431

    Article  PubMed  CAS  Google Scholar 

  • Nitz D (2009) Parietal cortex, navigation, and the construction of arbitrary reference frames for spatial information. Neurobiol Learn Mem 91(2):179–185. doi:10.1016/j.nlm.2008.08.007

    Article  PubMed  Google Scholar 

  • Nyska A, Leininger JR, Maronpot RR, Haseman JK, Hailey JR (1998) Effect of individual versus group caging on the incidence of pituitary and Leydig cell tumors in F344 rats: proposed mechanism. Med Hypotheses 50:525–529

    Article  PubMed  CAS  Google Scholar 

  • Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, Walker Z, Kennedy A, Fox N, Rossor M, Brooks DJ (2009) Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 72(1):56–62. doi:10.1212/01.wnl.0000338622.27876.0d

    Article  PubMed  CAS  Google Scholar 

  • Panarsky R, Luques L, Weinstock M (2012) Anti-inflammatory effects of ladostigil and its metabolites in aged rat brain and in microglial cells. J Neuroimmune Pharmacol 7(2):488–498. doi:10.1007/s11481-012-9358-z

    Article  PubMed  Google Scholar 

  • Park LC, Zhang H, Sheu KF, Calingasan NY, Kristal BS, Lindsay JG, Gibson GE (1999) Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem 72(5):1948–1958

    Article  PubMed  CAS  Google Scholar 

  • Pepeu G, Casamenti F, Scali C, Jeglinski W (1992) Aging of brain cholinergic neurons: pharmacological interventions. Clin Neuropharmacol 15(Suppl 1 Pt A):31A–32A

    Article  PubMed  Google Scholar 

  • Persson CM, Wallin AK, Levander S, Minthon L (2009) Changes in cognitive domains during three years in patients with Alzheimer’s disease treated with donepezil. BMC Neurol 9:7. doi:10.1186/1471-2377-9-7

    Article  PubMed  Google Scholar 

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308

    Article  PubMed  CAS  Google Scholar 

  • Pieta Dias C, Martins de Lima MN, Presti-Torres J, Dornelles A, Garcia VA, Siciliani Scalco F, Rewsaat Guimaraes M, Constantino L, Budni P, Dal-Pizzol F, Schroder N (2007) Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience 146(4):1719–1725. doi:10.1016/j.neuroscience.2007.03.018

    Article  PubMed  CAS  Google Scholar 

  • Raschetti R, Albanese E, Vanacore N, Maggini M (2007) Cholinesterase inhibitors in mild cognitive impairment: a systematic review of randomised trials. PLoS Med 4(11):e338. doi:10.1371/journal.pmed.0040338

    Article  PubMed  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21(1):172–188. doi:10.1021/tx700210j

    Article  PubMed  Google Scholar 

  • Scali C, Giovannini MG, Bartolini L, Prosperi C, Hinz V, Schmidt B, Pepeu G (1997a) Effect of metrifonate on extracellular brain acetylcholine and object recognition in aged rats. Eur J Pharmacol 325(2–3):173–180

    Article  PubMed  CAS  Google Scholar 

  • Scali C, Giovannini MG, Prosperi C, Bartolini L, Pepeu G (1997b) Tacrine administration enhances extracellular acetylcholine in vivo and restores the cognitive impairment in aged rats. Pharmacol Res 36(6):463–469. doi:10.1006/phrs.1997.0252

    Article  PubMed  CAS  Google Scholar 

  • Schneider LS, Insel PS, Weiner MW (2011) Treatment with cholinesterase inhibitors and memantine of patients in the Alzheimer’s Disease Neuroimaging Initiative. Arch Neurol 68(1):58–66. doi:10.1001/archneurol.2010.343

    Article  PubMed  Google Scholar 

  • Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189. doi:10.1189/jlb.0603252

    Article  PubMed  CAS  Google Scholar 

  • Shoham S, Bejar C, Kovalev E, Schorer-Apelbaum D, Weinstock M (2007) Ladostigil prevents gliosis, oxidative-nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacology 52(3):836–843. doi:10.1016/j.neuropharm.2006.10.005

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Nunomura A, Lee HG, Zhu X, Moreira PI, Avila J, Perry G (2005) Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol Aging 26(5):579–580. doi:10.1016/j.neurobiolaging.2004.09.021

    Article  PubMed  CAS  Google Scholar 

  • Sterling J, Herzig Y, Goren T, Finkelstein N, Lerner D, Goldenberg W, Miskolczi I, Molnar S, Rantal F, Tamas T, Toth G, Zagyva A, Zekany A, Finberg J, Lavian G, Gross A, Friedman R, Razin M, Huang W, Krais B, Chorev M, Youdim MB, Weinstock M (2002) Novel dual inhibitors of AChE and MAO derived from hydroxy aminoindan and phenethylamine as potential treatment for Alzheimer’s disease. J Med Chem 45(24):5260–5279

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Loveman E, Clegg A, Kirby J, Picot J, Payne E, Green C (2006) A systematic review of the clinical effectiveness of donepezil, rivastigmine and galantamine on cognition, quality of life and adverse events in Alzheimer’s disease. Int J Geriatr Psychiatry 21(1):17–28. doi:10.1002/gps.1402

    Article  PubMed  CAS  Google Scholar 

  • Valla J, Berndt JD, Gonzalez-Lima F (2001) Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: superficial laminar cytochrome oxidase associated with disease duration. J Neurosci 21(13):4923–4930

    PubMed  CAS  Google Scholar 

  • Venneri A, Gorgoglione G, Toraci C, Nocetti L, Panzetti P, Nichelli P (2011) Combining neuropsychological and structural neuroimaging indicators of conversion to Alzheimer’s disease in amnestic mild cognitive impairment. Curr Alzheimer Res 8(7):789–797

    Article  PubMed  CAS  Google Scholar 

  • Wang RH, Bejar C, Weinstock M (2000) Gender differences in the effect of rivastigmine on brain cholinesterase activity and cognitive function in rats. Neuropharmacology 39(3):497–506

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker D (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5(3):342–345

    Article  PubMed  CAS  Google Scholar 

  • Weinstock M, Bejar C, Wang RH, Poltyrev T, Gross A, Finberg JP, Youdim MB (2000) TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. J Neural Transm Suppl 60:157–169

    PubMed  Google Scholar 

  • Weinstock M, Luques L, Poltyrev T, Bejar C, Shoham S (2011) Ladostigil prevents age-related glial activation and spatial memory deficits in rats. Neurobiol Aging 32(6):1069–1078. doi:10.1016/j.neurobiolaging.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  • Wezenberg E, Verkes RJ, Sabbe BG, Ruigt GS, Hulstijn W (2005) Modulation of memory and visuospatial processes by biperiden and rivastigmine in elderly healthy subjects. Psychopharmacology (Berl) 181(3):582–594. doi:10.1007/s00213-005-0083-7

    Article  CAS  Google Scholar 

  • Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256(3):240–246. doi:10.1111/j.1365-2796.2004.01380.x

    Article  PubMed  CAS  Google Scholar 

  • Winters BD, Saksida LM, Bussey TJ (2006) Paradoxical facilitation of object recognition memory after infusion of scopolamine into perirhinal cortex: implications for cholinergic system function. J Neurosci 26(37):9520–9529. doi:10.1523/JNEUROSCI.2319-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Rong S, Xie B, Sun Z, Zhang L, Wu H, Yao P, Zhang X, Zhang Y, Liu L (2009) Rejuvenation of antioxidant and cholinergic systems contributes to the effect of procyanidins extracted from the lotus seedpod ameliorating memory impairment in cognitively impaired aged rats. Eur Neuropsychopharmacol 19(12):851–860. doi:10.1016/j.euroneuro.2009.07.006

    Article  PubMed  CAS  Google Scholar 

  • Yasuno F, Kosaka J, Ota M, Higuchi M, Ito H, Fujimura Y, Nozaki S, Takahashi S, Mizukami K, Asada T, Suhara T (2012) Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [(11)C]DAA1106. Psychiatry Res 203(1):67–74

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Weinstock M (2001) Molecular basis of neuroprotective activities of rasagiline and the anti-Alzheimer drug TV3326 [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cell Mol Neurobiol 21(6):555–573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Semion Shishlianikov for his care of the animals and Avraham Pharmaceuticals for providing ladostigil.

Conflict of interest

Marta Weinstock is a member of the board of Avraham Pharmaceuticals that, together with the Yissum of the Hebrew University, is currently funding the clinical development of ladostigil. The co-authors have no conflict of interest that could bias their work and none of them receives any remuneration from a Pharmaceutical company associated with the research project. The research is supported by independent funds of the Hebrew University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Weinstock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstock, M., Bejar, C., Schorer-Apelbaum, D. et al. Dose-dependent Effects of Ladostigil on Microglial Activation and Cognition in Aged Rats. J Neuroimmune Pharmacol 8, 345–355 (2013). https://doi.org/10.1007/s11481-013-9433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-013-9433-0

Keywords

Navigation