Skip to main content

Advertisement

Log in

Glatiramer Acetate Protects Against Inflammatory Synaptopathy in Experimental Autoimmune Encephalomyelitis

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Glutamate-mediated excitotoxicity is supposed to induce neurodegeneration in multiple sclerosis (MS). Glatiramer acetate (GA) is an immunomodulatory agent used in MS treatment with potential neuroprotective action. Aim of the present study was to investigate whether GA has effects on glutamate transmission alterations occurring in experimental autoimmune encephalomyelitis (EAE), to disclose a possible mechanism of GA-induced neuroprotection in this mouse model of MS. Single neuron electrophysiological recordings and immunofluorescence analysis of microglia activation were performed in the striatum of EAE mice, treated or not with GA, at different stages of the disease. GA treatment was able to reverse the tumor necrosis factor-α (TNF-α)-induced alterations of striatal glutamate-mediated excitatory postsynaptic currents (EPSCs) of EAE mice. Incubation of striatal slices of control animals with lymphocytes taken from EAE mice treated with GA failed to replicate such an anti-glutamatergic effect, while activated microglial cells stimulated with GA in vitro mimicked the effect of GA treatment of EAE mice. Consistently, EAE mice treated with GA had less microglial activation and less TNF-α expression than untreated EAE animals. Furthermore, direct application of GA to EAE slices replicated the in vivo protective activity of GA. Our results show that GA is neuroprotective against glutamate toxicity independently of its peripheral immunodulatory action, and through direct modulation of microglial activation and TNF-α release in the grey matter of EAE and possibly of MS brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 94:10821–10826

    Article  PubMed  CAS  Google Scholar 

  • Aharoni R, Arnon R, Eilam R (2005a) Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 25:8217–8228

    Article  PubMed  CAS  Google Scholar 

  • Aharoni R, Eilam R, Domev H, Labunskay G, Sela M, Arnon R (2005b) The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 102:19045–19050

    Article  PubMed  CAS  Google Scholar 

  • Aharoni R, Vainshtein A, Stock A, Eilam R, From R, Shinder V, Arnon R (2011) Distinct pathological patterns in relapsing-remitting and chronic models of experimental autoimmune enchephalomyelitis and the neuroprotective effect of glatiramer acetate. J Autoimmun 37:228–241

    Article  PubMed  CAS  Google Scholar 

  • Arnon R, Aharoni R (2004) Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 101:14593–14598

    Article  PubMed  CAS  Google Scholar 

  • Arnon R, Aharoni R (2007) Neurogenesis and neuroprotection in the CNS-fundamental elements in the effect of glatiramer acetate on treatment of auroimmune neurological disorders. Mol Neurobiol 36:245–253

    Article  PubMed  CAS  Google Scholar 

  • Azoulay D, Vachapova V, Shihman B, Miler A, Karni A (2005) Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 167:215–218

    Article  PubMed  CAS  Google Scholar 

  • Bakshi R, Benedict RH, Bermel RA, Caruthers SD, Puli SR, Tjoa CW, Fabiano AJ, Jacobs L (2002) T2 hypointensity in the deep gray matter of patients with multiple sclerosis: a quantitative magnetic resonance imaging study. Arch Neurol 59:62–68

    Article  PubMed  Google Scholar 

  • Bermel RA, Innus MD, Tjoa CW, Bakshi R (2003) Selective caudate atrophy in multiple sclerosis: a 3D MRI parcellation study. Neuroreport 14:335–339

    Article  PubMed  Google Scholar 

  • Blair M, Pease ME, Hammond J, Valenta D, Kielczewski J, Levkovitch-Verbin H, Quigley H (2005) Effect of glatiramer acetate on primary and secondary degeneration of retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci 46(3):884–890

    Article  PubMed  Google Scholar 

  • Bolton C, Paul C (1997) MK-801 limits neurovascular dysfunction during experimental allergic encephalomyelitis. J Pharmacol Exp Ther 282:397–402

    PubMed  CAS  Google Scholar 

  • Boster A, Bartoszek MP, O’Connell C, Pitt D, Racke M (2011) Efficacy, safety, and cost-effectiveness of glatiramer acetate in the treatment of relapsing-remitting multiple sclerosis. Ther Adv Neurol Disord 4:319–332

    Article  PubMed  CAS  Google Scholar 

  • Caragnano M, Tortorella P, Bergami A, Ruggieri M, Livrea P, Specchio LM, Martino G, Trojano M, Furlan R, Avolio C (2012) Monocytes P2X7 purinergic receptor is modulated by glatiramer acetate in multiple sclerosis. J Neuroimmunol 245(1–2):93–97

    Article  PubMed  CAS  Google Scholar 

  • Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, Musella A, D’Amelio M, Cavallucci V, Martorana A, Bergamaschi A, Cencioni MT, Diamantini A, Butti E, Comi G, Bernardi G, Cecconi F, Battistini L, Furlan R, Martino G (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29:3442–3452

    Article  PubMed  CAS  Google Scholar 

  • Chabot S, Williams G, Yong VW (1997) Microglial production of TNF-alpha is induced by activated T lymphocytes. Involvement of VLA-4 and inhibition by interferonbeta-1b. J Clin Invest 100:604–612

    Article  PubMed  CAS  Google Scholar 

  • Chabot S, Yong FP, Le DM, Metz LM, Myles T, Yong VW (2002) Cytokine production in T lymphocyte-microglia interaction is attenuated by glatiramer acetate: a mechanism for therapeutic efficacy in multiple sclerosis. Mult Scler 8:299–306

    Article  PubMed  CAS  Google Scholar 

  • Comi G, Cohen JA, Arnold DL, Wynn D, Filippi M (2011) Phase III dose-comparison study of glatiramer acetate for multiple sclerosis. Ann Neurol 69:75–82

    Article  PubMed  CAS  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  PubMed  CAS  Google Scholar 

  • Dupuis M, De Jesús Ibarra-Sánchez M, Tremblay ML, Duplay P (2003) Gr-1+ myeloid cells lacking T cell protein tyrosine phosphatase inhibit lymphocyte proliferation by an IFN-gamma- and nitric oxide-dependent mechanism. J Immunol 171:726–732

    PubMed  CAS  Google Scholar 

  • Fridkis-Hareli M, Teitelbaum D, Pecht I, Arnon R, Sela M (1997) Binding of copolymer 1 and myelin basic protein leads to clustering of class II MHC molecules on antigen-presenting cells. Int Immunol 9:925–934

    Article  PubMed  CAS  Google Scholar 

  • Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841–851

    Article  PubMed  Google Scholar 

  • Gonsette RE (2008) Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci 274:48–53

    Article  PubMed  CAS  Google Scholar 

  • Haji N, Mandolesi G, Gentile A, Sacchetti L, Fresegna D, Rossi S, Musella A, Sepman H, Motta C, Studer V, De Chiara V, Bernardi G, Strata P, Centonze D (2012) TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Exp Neurol 237(2):296–303

    Article  PubMed  CAS  Google Scholar 

  • Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hövelmeyer N, Waisman A, Rülicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152

    Article  PubMed  CAS  Google Scholar 

  • Herrmann AM, Göbel K, Simon OJ, Melzer N, Schuhmann MK, Stenner MP, Weishaupt A, Kleinschnitz C, Bittner S, Meuth P, Stuve O, Budde T, Kieseier BC, Wiendl H, Meuth SG (2010) Glatiramer acetate attenuates pro-inflammatory T cell responses but does not directly protect neurons from inflammatory cell death. Am J Pathol 177:3051–3060

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Li N, Zhang X, Zheng B, Zhang JZ (2005) Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci U S A 102:6449–6454

    Article  PubMed  CAS  Google Scholar 

  • Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, Myers LW, Panitch HS, Rose JW, Schiffer RB (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45:1268–1276

    Article  PubMed  CAS  Google Scholar 

  • Kala M, Miravalle A, Vollmer T (2011) Recent insights into the mechanism of action of glatiramer acetate. J Neuroimmunol 235:9–17

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Ifergan I, Antel JP, Seguin R, Duddy M, Lapierre Y, Jalili F, Bar-Or A (2004) Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 172:7144–7153

    PubMed  CAS  Google Scholar 

  • Liu J, Johnson TV, Lin J, Ramirez SH, Bronich TK, Caplan S, Persidsky Y, Gendelman HE, Kipnis J (2007) T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 37:3143–3154

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA (2009) The multifaceted profile of activated microglia. Mol Neurobiol 40:139–156

    Article  PubMed  CAS  Google Scholar 

  • Miller A, Shapiro S, Gershtein R, Kinarty A, Rawashdeh H, Honigman S, Lahat N (1998) Treatment of multiple sclerosis with copolymer-1 (Copaxone): implicating mechanisms of Th1 to Th2/Th3 immune-deviation. J Neuroimmunol 92:113–121

    Article  PubMed  CAS  Google Scholar 

  • Muzio L, Martino G, Furlan R (2007) Multifaceted aspects of inflammation in multiple sclerosis: the role of microglia. J Neuroimmunol 191:39–44

    Article  PubMed  CAS  Google Scholar 

  • Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6:67–70

    Article  PubMed  CAS  Google Scholar 

  • Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. Neurosci Res 81:374–389

    Article  CAS  Google Scholar 

  • Pul R, Moharregh-Khiabani D, Škuljec J, Skripuletz T, Garde N, Voss EV, Stangel M (2011) Glatiramer acetate modulates TNF-α and IL-10 secretion in microglia and promotes their phagocytic activity. J Neuroimmune Pharmacol 6:381–388

    Article  PubMed  Google Scholar 

  • Ratchford JN, Endres CJ, Hammoud DA, Pomper MG, Shiee N, McGready J, Pham DL, Calabresi PA (2012) Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol 259:1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Furlan R, De Chiara V, Muzio L, Musella A, Motta C, Studer V, Cavasinni F, Bernardi G, Martino G, Cravatt BF, Lutz B, Maccarrone M, Centonze D (2011a) Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. Brain Behav Immun 25:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Muzio L, De Chiara V, Grasselli G, Musella A, Musumeci G, Mandolesi G, De Ceglia R, Maida S, Biffi E, Pedrocchi A, Menegon A, Bernardi G, Furlan R, Martino G, Centonze D (2011b) Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis. Brain Behav Immun 25:947–956

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Furlan R, De Chiara V, Motta C, Studer V, Mori F, Musella A, Bergami A, Muzio L, Bernardi G, Battistini L, Martino G, Centonze D (2012) Interleukin-1β causes synaptic hyperexcitability in multiple sclerosis. Ann Neurol 71:76–83

    Article  PubMed  CAS  Google Scholar 

  • Sanna A, Fois ML, Arru G, Huang Y-M, Link H, Pugliatti M, Rosati G, Sotgiu S (2006) Glatiramer acetate reduces lymphocyte proliferation and enhances IL-5 and IL-13 production through modulation of monocyte-derived dendritic cells in multiple sclerosis. Clin Exp Immunol 143:357–362

    Article  PubMed  CAS  Google Scholar 

  • Saresella M, Marventano I, Longhi R, Lissoni F, Trabattoni D, Mendozzi L, Caputo D, Clerici M (2008) CD4+CD25+FoxP3+PD1 regulatory T cells in acute and stable relapsing–remitting multiple sclerosis and their modulation by therapy. FASEB J 22:3500–3508

    Article  PubMed  CAS  Google Scholar 

  • Schori H, Kipnis J, Yoles E, WoldeMussie E, Ruiz G, Wheeler LA, Schwartz M (2001) Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A 98(6):3398–3403

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  PubMed  CAS  Google Scholar 

  • Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, Patarroyo JC, Stüve O, Sobel RA, Steinman L, Zamvil SS (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13:935–943

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Vladimiro Batocchi, Massimo Tolu and Maria Teresa Ciotti for excellent technical assistance. This investigation was supported by a grant from TEVA to DC, by the Italian National Ministero della Salute and by Fondazione TERCAS to DC; by a grant from the European Community (AXREGEN: Axonal regeneration, plasticity & stem cells - Grant agreement 21 4003) founding PhD fellowship of NH.

Conflict of Interest

Silvia Rossi received honoraria for writing from Bayer Schering and funding for traveling from Novartis, Teva, and Merck Serono. She is involved as sub-investigator in clinical trials for Novartis, Merck Serono, Teva, Bayer Schering, Sanofi-aventis, and Biogen Idec.

Valentina De Chiara received funding for traveling by Teva. She is involved as study coordinator in clinical trials for Novartis, Merck Serono, Teva, Bayer Schering, Sanofi-aventis, and Biogen Idec.

Giorgio Bernardi is the principal investigator in clinical trials for Merck Serono and Teva.

Diego Centonze acted as an Advisory Board member of Merck-Serono, Teva, Novartis, Biogen, Bayer Schering, and received funding for traveling and honoraria for speaking or consultation fees from Merck Serono, Teva, Novartis, Bayer Schering, Sanofi-aventis, and Biogen Idec. He is also the principal investigator in clinical trials for Novartis, Merck Serono, Teva, Bayer Schering, Sanofi-aventis, and Biogen Idec.

The other authors have no conflict of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Centonze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentile, A., Rossi, S., Studer, V. et al. Glatiramer Acetate Protects Against Inflammatory Synaptopathy in Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 8, 651–663 (2013). https://doi.org/10.1007/s11481-013-9436-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-013-9436-x

Keywords

Navigation