Skip to main content

Advertisement

Log in

Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells. Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer’s disease and amyotrophic lateral sclerosis. A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors. In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ashton JC (2007) Cannabinoids for the treatment of inflammation. Curr Opin Investig Drugs 8:373–384

    CAS  PubMed  Google Scholar 

  • Atwood BK, Mackie K (2010) CB2: a cannabinoid receptor with an identity crisis. Br J Pharmacol 160:467–479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banks WA (2014) The blood–brain barrier in neuroimmunology: tales of separation and assimilation. Brain Behav Immun

  • Basu S, Dittel BN (2011) Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease. Immunol Res 51:26–38

    CAS  PubMed  Google Scholar 

  • Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci: Off J Soc Neurosci 23:11136–11141

    CAS  Google Scholar 

  • Bindukumar B, Mahajan SD, Reynolds JL, Hu Z, Sykes DE, Aalinkeel R, Schwartz SA (2008) Genomic and proteomic analysis of the effects of cannabinoids on normal human astrocytes. Brain Res 1191:1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blazquez C, Sanchez C, Daza A, Galve-Roperh I, Guzman M (1999) The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme. J Neurochem 72:1759–1768

    CAS  PubMed  Google Scholar 

  • Blazquez C et al (2011) Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease. Brain: a J Neurol 134:119–136

    Google Scholar 

  • Cabral GA, Harmon KN, Carlisle SJ (2001) Cannabinoid-mediated inhibition of inducible nitric oxide production by rat microglial cells: evidence for CB1 receptor participation. Adv Exp Med Biol 493:207–214

    CAS  PubMed  Google Scholar 

  • Carrier EJ, Kearn CS, Barkmeier AJ, Breese NM, Yang W, Nithipatikom K, Pfister SL, Campbell WB, Hillard CJ (2004) Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol Pharmacol 65:999–1007

    CAS  PubMed  Google Scholar 

  • Carter GT, Abood ME, Aggarwal SK, Weiss MD (2010) Cannabis and amyotrophic lateral sclerosis: hypothetical and practical applications, and a call for clinical trials. Am J Hosp Palliat Care 27:347–356

    PubMed  Google Scholar 

  • Castaneto MS, Gorelick DA, Desrosiers NA, Hartman RL, Pirard S, Huestis MA (2014) Synthetic cannabinoids: epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend

  • Centonze D, Bari M, Rossi S, Prosperetti C, Furlan R, Fezza F, De Chiara V, Battistini L, Bernardi G, Bernardini S, Martino G, Maccarrone M (2007) The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain: J Neurol 130:2543–2553

    Google Scholar 

  • Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53:344–354

    CAS  PubMed  Google Scholar 

  • Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 23:137–149

    Google Scholar 

  • Chiurchiù V, Maccarrone M (2011) Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15:2605–2641

    PubMed  Google Scholar 

  • Chiurchiu V, Cencioni MT, Bisicchia E, De Bardi M, Gasperini C, Borsellino G, Centonze D, Battistini L, Maccarrone M (2013) Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis. Ann Neurol 73:626–636

    CAS  PubMed  Google Scholar 

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    CAS  PubMed  Google Scholar 

  • Consroe P, Laguna J, Allender J, Snider S, Stern L, Sandyk R, Kennedy K, Schram K (1991) Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacol Biochem Behav 40:701–708

    CAS  PubMed  Google Scholar 

  • Curran NM, Griffin BD, O’Toole D, Brady KJ, Fitzgerald SN, Moynagh PN (2005) The synthetic cannabinoid R(+)WIN 55,212-2 inhibits the interleukin-1 signaling pathway in human astrocytes in a cannabinoid receptor-independent manner. J Biol Chem 280:35797–35806

    CAS  PubMed  Google Scholar 

  • Cutando L, Busquets-Garcia A, Puighermanal E, Gomis-Gonzalez M, Delgado-Garcia JM, Gruart A, Maldonado R, Ozaita A (2013) Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Investig 123:2816–2831

    CAS  PubMed Central  PubMed  Google Scholar 

  • D’Addario C, Di Francesco A, Pucci M, Finazzi Agro A, Maccarrone M (2013) Epigenetic mechanisms and endocannabinoid signalling. FEBS J 280:1905–1917

    PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    CAS  PubMed  Google Scholar 

  • Dirikoc S, Priola SA, Marella M, Zsurger N, Chabry J (2007) Nonpsychoactive cannabidiol prevents prion accumulation and protects neurons against prion toxicity. J Neurosci: Off J Soc Neurosci 27:9537–9544

    CAS  Google Scholar 

  • Downer EJ (2011) Cannabinoids and innate immunity: taking a toll on neuroinflammation. Sci World J 11:855–865

    CAS  Google Scholar 

  • Downer EJ, Clifford E, Gran B, Nel HJ, Fallon PG, Moynagh PN (2011) Identification of the synthetic cannabinoid R(+)WIN55,212-2 as a novel regulator of IFN regulatory factor 3 activation and IFN-beta expression: relevance to therapeutic effects in models of multiple sclerosis. J Biol Chem 286:10316–10328

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Alfy AT, Ivey K, Robinson K, Ahmed S, Radwan M, Slade D, Khan I, ElSohly M, Ross S (2010) Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol Biochem Behav 95:434–442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49:67–79

    CAS  PubMed  Google Scholar 

  • ElSohly M (2002) Chemical constituents of Cannabis. In: Grotenhermen F, Russo E (eds) Cannabis and cannabinoids—pharmacology, toxicology and therapeutic potential. Haworth Press, New York, pp 27–36

    Google Scholar 

  • Elsohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548

    CAS  PubMed  Google Scholar 

  • Elsohly MA, Gul W, Wanas AS, Radwan MM (2014) Synthetic cannabinoids: analysis and metabolites. Life Sci 97:78–90

    CAS  PubMed  Google Scholar 

  • Esposito G, Izzo AA, Di Rosa M, Iuvone T (2001) Selective cannabinoid CB1 receptor-mediated inhibition of inducible nitric oxide synthase protein expression in C6 rat glioma cells. J Neurochem 78:835–841

    CAS  PubMed  Google Scholar 

  • Esposito G, Scuderi C, Savani C, Steardo L Jr, De Filippis D, Cottone P, Iuvone T, Cuomo V, Steardo L (2007) Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol 151:1272–1279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eubanks LM, Rogers CJ, Beuscher AE, Koob GF, Olson AJ, Dickerson TJ, Janda KD (2006) A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol Pharm 3:773–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Facchinetti F, Del Giudice E, Furegato S, Passarotto M, Leon A (2003) Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide. Glia 41:161–168

    PubMed  Google Scholar 

  • Fernandez-Ruiz J, Gonźalez S, Romero J, Ramos JA (2005) Cannabinoids in neurodegeneration and neuroprotection. In: Mechoulam R (ed) Cannabinoids as Therapeutics (MDT). Birkhäuser Verlag, Switzerland, pp 79–109

    Google Scholar 

  • Fernandez-Ruiz J, Romero J, Velasco G, Tolon RM, Ramos JA, Guzman M (2007) Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci 28:39–45

    CAS  PubMed  Google Scholar 

  • Froger N, Orellana JA, Cohen-Salmon M, Ezan P, Amigou E, Saez JC, Giaume C (2009) Cannabinoids prevent the opposite regulation of astroglial connexin43 hemichannels and gap junction channels induced by pro-inflammatory treatments. J Neurochem 111:1383–1397

    CAS  PubMed  Google Scholar 

  • Galve-Roperh I, Chiurchiu V, Diaz-Alonso J, Bari M, Guzman M, Maccarrone M (2013) Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog Lipid Res 52:633–650

    CAS  PubMed  Google Scholar 

  • Gandhi R, Laroni A, Weiner HL (2010) Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol 221:7–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    CAS  Google Scholar 

  • Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45

    PubMed Central  PubMed  Google Scholar 

  • Gongora C, Hose S, O’Brien TP, Sinha D (2004) Downregulation of class II transactivator (CIITA) expression by synthetic cannabinoid CP55,940. Immunol Lett 91:11–16

    CAS  PubMed  Google Scholar 

  • Gonzalez S, Scorticati C, Garcia-Arencibia M, de Miguel R, Ramos JA, Fernandez-Ruiz J (2006) Effects of rimonabant, a selective cannabinoid CB1 receptor antagonist, in a rat model of Parkinson’s disease. Brain Res 1073–1074:209–219

    PubMed  Google Scholar 

  • Gosselet F, Saint-Pol J, Candela P, Fenart L (2013) Amyloid-beta peptides, Alzheimer’s disease and the blood–brain barrier. Curr Alzheimer Res 10:1015–1033

    CAS  PubMed  Google Scholar 

  • Granja AG, Carrillo-Salinas F, Pagani A, Gómez-Cañas M, Negri R, Navarrete C, Mecha M, Mestre L, Fiebich BL, Cantarero I, Calzado MA, Bellido ML, Fernandez-Ruiz J, Appendino G, Guaza C, Muñoz E (2012) A cannabigerol quinone alleviates neuroinflammation in a chronic model of multiple sclerosis. J Neuroimmune Pharm 7:1002–1016

    Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    CAS  PubMed  Google Scholar 

  • Hassan S, Eldeeb K, Millns PJ, Bennett AJ, Alexander SP, Kendall DA (2014) Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation. Br J Pharmacol 171:2426–2439

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International union of pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    CAS  PubMed  Google Scholar 

  • Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J (2014) Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol

  • Huang E, Wells CA (2014) The ground state of innate immune responsiveness is determined at the interface of genetic, epigenetic, and environmental influences. J Immunol 193:13–19

    CAS  PubMed  Google Scholar 

  • Huffman JW (2000) The search for selective ligands for the CB2 receptor. Curr Pharm Des 6:1323–1337

    CAS  PubMed  Google Scholar 

  • Huffman JW, Dai D (1994) Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg Med Chem Lett 4:563–566

    Google Scholar 

  • Janefjord E, Maag JL, Harvey BS, Smid SD (2014) Cannabinoid effects on beta amyloid fibril and aggregate formation, neuronal and microglial-activated neurotoxicity in vitro. Cell Mol Neurobiol 34:31–42

    CAS  PubMed  Google Scholar 

  • Jawahar R, Oh U, Yang S, Lapane KL (2013) A systematic review of pharmacological pain management in multiple sclerosis. Drugs 73:1711–1722

    CAS  PubMed  Google Scholar 

  • Jensen CJ, Massie A, De Keyser J (2013) Immune players in the CNS: the astrocyte. J Neuroimmune Pharm: Off J Soc NeuroImmune Pharm 8:824–839

    Google Scholar 

  • Joerger M, Wilkins J, Fagagnini S, Baldinger R, Brenneisen R, Schneider U, Goldman B, Weber M (2012) Single-dose pharmacokinetics and tolerability of oral delta-9- tetrahydrocannabinol in patients with amyotrophic lateral sclerosis. Drug Metab Lett 6:102–108

    CAS  PubMed  Google Scholar 

  • Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461

    PubMed Central  PubMed  Google Scholar 

  • Kim K, Moore DH, Makriyannis A, Abood ME (2006) AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis. Eur J Pharmacol 542:100–105

    CAS  PubMed  Google Scholar 

  • Klein TW (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5:400–411

    CAS  PubMed  Google Scholar 

  • Kong W, Li H, Tuma RF, Ganea D (2014) Selective CB2 receptor activation ameliorates EAE by reducing Th17 differentiation and immune cell accumulation in the CNS. Cell Immunol 287:1–17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koppel BS, Brust JC, Fife T, Bronstein J, Youssof S, Gronseth G, Gloss D (2014) Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 82:1556–1563

    PubMed Central  PubMed  Google Scholar 

  • Kozela E, Pietr M, Juknat A, Rimmerman N, Levy R, Vogel Z (2010) Cannabinoids Delta(9)-tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF-kappaB and interferon-beta/STAT proinflammatory pathways in BV-2 microglial cells. J Biol Chem 285:1616–1626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kozela E, Lev N, Kaushansky N, Eilam R, Rimmerman N, Levy R, Ben-Nun A, Juknat A, Vogel Z (2011) Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice. Br J Pharmacol 163:1507–1519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lastres-Becker I, Berrendero F, Lucas JJ, Martin-Aparicio E, Yamamoto A, Ramos JA, Fernandez-Ruiz JJ (2002) Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington’s disease. Brain Res 929:236–242

    CAS  PubMed  Google Scholar 

  • Lorenzetti V, Solowij N, Whittle S, Fornito A, Lubman DI, Pantelis C, Yücel M (2014) Gross morphological brain changes with chronic, heavy cannabis use. Brit J Psychiatr

  • Lotsch J, Schneider G, Reker D, Parnham MJ, Schneider P, Geisslinger G, Doehring A (2013) Common non-epigenetic drugs as epigenetic modulators. Trends Mol Med 19:742–753

    PubMed  Google Scholar 

  • Maccarrone M, Bernardi G, Finazzi Agro A, Centonze D (2011) Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance. Br J Pharmacol 163:1379–1390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maccarrone M, Guzman M, Mackie K, Doherty P, Harkany T (2014) Programming and reprogramming neural cells by (endo-)cannabinoids: from physiological rules to emerging therapies. Nat Rev Neurosci 15:786–801

    CAS  PubMed  Google Scholar 

  • Magistretti PJ (2009) Neuroscience. Low-cost travel in neurons. Science 325:1349–1351

    CAS  PubMed  Google Scholar 

  • Mahadevan A, Siegel C, Martin BR, Abood ME, Beletskaya I, Razdan RK (2000) Novel cannabinol probes for CB1 and CB2 cannabinoid receptors. J Med Chem 43:3778–3785

    CAS  PubMed  Google Scholar 

  • Makriyannis A, Deng H (2000) Cannabimimetic indole derivatives. US Patent Office, Washington

    Google Scholar 

  • Maresz K, Carrier EJ, Ponomarev ED, Hillard CJ, Dittel BN (2005) Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J Neurochem 95:437–445

    CAS  PubMed  Google Scholar 

  • Martin-Moreno AM, Reigada D, Ramirez BG, Mechoulam R, Innamorato N, Cuadrado A, de Ceballos ML (2011) Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol Pharmacol 79:964–973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazzola C, Micale V, Drago F (2003) Amnesia induced by beta-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur J Pharmacol 477:219–225

    CAS  PubMed  Google Scholar 

  • Mecha M, Feliu A, Inigo PM, Mestre L, Carrillo-Salinas FJ, Guaza C (2013) Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors. Neurobiol Dis 59:141–150

    CAS  PubMed  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    CAS  PubMed  Google Scholar 

  • Mechoulam R, Peters M, Murillo-Rodriguez E, Hanus LO (2007) Cannabidiol–recent advances. Chem Biodivers 4:1678–1692

    CAS  PubMed  Google Scholar 

  • Mechoulam R, Hanus LO, Pertwee R, Howlett AC (2014) Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci 15:757–764

    CAS  PubMed  Google Scholar 

  • Mestre L, Docagne F, Correa F, Loria F, Hernangomez M, Borrell J, Guaza C (2009) A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol Cell Neurosci 40:258–266

    CAS  PubMed  Google Scholar 

  • Mestre L, Inigo PM, Mecha M, Correa FG, Hernangomez-Herrero M, Loria F, Docagne F, Borrell J, Guaza C (2011) Anandamide inhibits Theiler’s virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB(1) receptors. J Neuroinflammation 8:102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molina-Holgado F, Molina-Holgado E, Guaza C, Rothwell NJ (2002) Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. J Neurosci Res 67:829–836

    CAS  PubMed  Google Scholar 

  • Molina-Holgado F, Pinteaux E, Moore JD, Molina-Holgado E, Guaza C, Gibson RM, Rothwell NJ (2003) Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J Neurosci: Off J Soc Neurosci 23:6470–6474

    CAS  Google Scholar 

  • Monier A, Adle-Biassette H, Delezoide AL, Evrard P, Gressens P, Verney C (2007) Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 66:372–382

    PubMed  Google Scholar 

  • Moreno-Martet M, Espejo-Porras F, Fernandez-Ruiz J, de Lago E (2014) Changes in endocannabinoid receptors and enzymes in the spinal cord of SOD1(G93A) transgenic mice and evaluation of a Sativex((R)) -like combination of phytocannabinoids: interest for future therapies in amyotrophic lateral sclerosis. CNS Neurosci Ther 20:809–815

    CAS  PubMed  Google Scholar 

  • Moriconi A, Cerbara I, Maccarrone M, Topai A (2010) GPR55: Current knowledge and future perspectives of a purported “Type-3” cannabinoid receptor. Curr Med Chem 17:1411–1429

    CAS  PubMed  Google Scholar 

  • Murikinati S, Juttler E, Keinert T, Ridder DA, Muhammad S, Waibler Z, Ledent C, Zimmer A, Kalinke U, Schwaninger M (2010) Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J: Off Publ Fed Am Soc Exp Biol 24:788–798

    CAS  Google Scholar 

  • Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402

    CAS  PubMed  Google Scholar 

  • Onaivi ES, Ishiguro H, Gong JP, Patel S, Perchuk A, Meozzi PA, Myers L, Mora Z, Tagliaferro P, Gardner E, Brusco A, Akinshola BE, Liu QR, Hope B, Iwasaki S, Arinami T, Teasenfitz L, Uhl GR (2006) Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 1074:514–536

    CAS  PubMed  Google Scholar 

  • Patel KD, Davison JS, Pittman QJ, Sharkey KA (2010) Cannabinoid CB(2) receptors in health and disease. Curr Med Chem 17:1393–1410

    PubMed  Google Scholar 

  • Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94:1077–1098

    PubMed  Google Scholar 

  • Perdiguero EG, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald H (2014) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. doi:10.1038/nature13989

    PubMed  Google Scholar 

  • Pertwee RG (2006) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147(Suppl 1):S163–S171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA (2010) International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB(1) and CB(2). Pharmacol Rev 62:588–631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pietr M, Kozela E, Levy R, Rimmerman N, Lin YH, Stella N, Vogel Z, Juknat A (2009) Differential changes in GPR55 during microglial cell activation. FEBS Lett 583:2071–2076

    CAS  PubMed  Google Scholar 

  • Pistis M, Melis M (2010) From surface to nuclear receptors: the endocannabinoid family extends its assets. Curr Med Chem 17:1450–1467

    CAS  PubMed  Google Scholar 

  • Price DA, Martinez AA, Seillier A, Koek W, Acosta Y, Fernandez E, Strong R, Lutz B, Marsicano G, Roberts JL, Giuffrida A (2009) WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Euro J Neurosci 29:2177–2186

    Google Scholar 

  • Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312

    CAS  PubMed  Google Scholar 

  • Pryce G, Baker D (2012) Potential control of multiple sclerosis by cannabis and the endocannabinoid system. CNS Neurol Disord Drug Targets 11:624–641

    CAS  PubMed  Google Scholar 

  • Pucci M, Rapino C, Di Francesco A, Dainese E, D’Addario C, Maccarrone M (2013) Epigenetic control of skin differentiation genes by phytocannabinoids. Br J Pharmacol 170:581–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radhakrishnan R, Wilkinson ST, D’Souza DC (2014) Gone to Pot - a review of the association between cannabis and psychosis. Front Psychiatr 5:54

    Google Scholar 

  • Raman C, McAllister SD, Rizvi G, Patel SG, Moore DH, Abood ME (2004) Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. Amyotroph Lateral Scler Motor Neuron Disord: Off Publ World Fed Neurol Res Group Motor Neuron Dis 5:33–39

    CAS  Google Scholar 

  • Ramirez BG, Blazquez C, Gomez del Pulgar T, Guzman M, de Ceballos ML (2005) Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci: Off J Soc Neurosci 25:1904–1913

    CAS  Google Scholar 

  • Ramirez SH, Hasko J, Skuba A, Fan S, Dykstra H, McCormick R, Reichenbach N, Krizbai I, Mahadevan A, Zhang M, Tuma R, Son YJ, Persidsky Y (2012) Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood–brain barrier dysfunction under inflammatory conditions. J Neurosci: Off J Soc Neurosci 32:4004–4016

    CAS  Google Scholar 

  • Reith W, LeibundGut-Landmann S, Waldburger JM (2005) Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol 5:793–806

    CAS  PubMed  Google Scholar 

  • Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439

    CAS  PubMed  Google Scholar 

  • Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98

    CAS  PubMed  Google Scholar 

  • Rossi S, De Chiara V, Musella A, Cozzolino M, Bernardi G, Maccarrone M, Mercuri NB, Carri MT, Centonze D (2010) Abnormal sensitivity of cannabinoid CB1 receptors in the striatum of mice with experimental amyotrophic lateral sclerosis. Amyotroph Later Scler: Off Publ World Fed Neurol Res Group Motor Neuron Dis 11:83–90

    CAS  Google Scholar 

  • Rossi B, Zenaro E, Angiari S, Ottoboni L, Bach S, Piccio L, Pietronigro EC, Scarpini E, Fusco M, Leon A, Constantin G (2011) Inverse agonism of cannabinoid CB1 receptor blocks the adhesion of encephalitogenic T cells in inflamed brain venules by a protein kinase A-dependent mechanism. J Neuroimmunol 233:97–105

    CAS  PubMed  Google Scholar 

  • Russo EB (2001) Hemp for headache: an in-depth historical and scientific review of cannabis in migraine treatment. J Cannabis Ther 2:21–92

    Google Scholar 

  • Russo EB, Burnett A, Hall B, Parker KK (2005) Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochem Res 30:1037–1043

    CAS  PubMed  Google Scholar 

  • Sagredo O, Pazos MR, Valdeolivas S, Fernandez-Ruiz J (2012) Cannabinoids: novel medicines for the treatment of Huntington’s disease. Recent Patents CNS Drug Discov 7:41–48

    CAS  Google Scholar 

  • Sanchez AJ, Garcia-Merino A (2012) Neuroprotective agents: cannabinoids. Clin Immunol 142:57–67

    CAS  PubMed  Google Scholar 

  • Sanchez C, Galve-Roperh I, Rueda D, Guzman M (1998) Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Delta9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol 54:834–843

    CAS  PubMed  Google Scholar 

  • Sanchez-Blazquez P, Rodriguez-Munoz M, Garzon J (2014) The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia. Frontiers Pèharmacology 4:169

    Google Scholar 

  • Schapira AH, Tolosa E (2010) Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 6:309–317

    CAS  PubMed  Google Scholar 

  • Schwartz M, Baruch K (2014) Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: boosting autoimmunity to fight-off chronic neuroinflammation. J Autoimmun

  • Sheng WS, Hu S, Min X, Cabral GA, Lokensgard JR, Peterson PK (2005) Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia 49:211–219

    PubMed  Google Scholar 

  • Sheng WS, Hu S, Ni HT, Rock RB, Peterson PK (2009) WIN55,212-2 inhibits production of CX3CL1 by human astrocytes: involvement of p38 MAP kinase. J Neuroimmune Pharm: Off J Soc NeuroImmune Pharmacol 4:244–248

    CAS  Google Scholar 

  • Shoemaker JL, Seely KA, Reed RL, Crow JP, Prather PL (2007) The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J Neurochem 101:87–98

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    PubMed Central  PubMed  Google Scholar 

  • Stefano GB, Liu Y, Goligorsky MS (1996) Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes, microglia, and human monocytes. J Biol Chem 271:19238–19242

    CAS  PubMed  Google Scholar 

  • Stella N (2010) Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58:1017–1030

    PubMed Central  PubMed  Google Scholar 

  • Toguri JT, Lehmann C, Laprairie RB, Szczesniak AM, Zhou J, Denovan-Wright EM, Kelly ME (2014) Anti-inflammatory effects of cannabinoid CB(2) receptor activation in endotoxin-induced uveitis. Br J Pharmacol 171:1448–1461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Viscomi MT, Oddi S, Latini L, Pasquariello N, Florenzano F, Bernardi G, Molinari M, Maccarrone M (2009) Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J Neurosci: Off J Soc Neurosci 29:4564–4570

    CAS  Google Scholar 

  • Wacnik PW, Luhr KM, Hill RH, Ljunggren HG, Kristensson K, Svensson M (2008) Cannabinoids affect dendritic cell (DC) potassium channel function and modulate DC T cell stimulatory capacity. J Immunol 181:3057–3066

    CAS  PubMed  Google Scholar 

  • Waksman Y, Olson JM, Carlisle SJ, Cabral GA (1999) The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells. J Pharmacol Exp Ther 288:1357–1366

    CAS  PubMed  Google Scholar 

  • Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci: Off J Soc Neurosci 23:1398–1405

    CAS  Google Scholar 

  • Weber M, Goldman B, Truniger S (2010) Tetrahydrocannabinol (THC) for cramps in amyotrophic lateral sclerosis: a randomised, double-blind crossover trial. J Neurol Neurosurg Psychiatr 81:1135–1140

    CAS  PubMed  Google Scholar 

  • Weissert R (2013) The immune pathogenesis of multiple sclerosis. J Neuroimmune Pharmacol: Off J Soc NeuroImmune Pharmacol 8:857–866

    Google Scholar 

  • Wrona D (2006) Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol 172:38–58

    CAS  PubMed  Google Scholar 

  • Xanthos DN, Sandkuhler J (2014) Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 15:43–53

    CAS  PubMed  Google Scholar 

  • Xia R, Samad TA, Btesh J, Jiang LH, Kays I, Stjernborg L, Dekker N (2011) TRPV1 signaling: mechanistic understanding and therapeutic potential. Curr Top Med Chem 11:2180–2191

    CAS  PubMed  Google Scholar 

  • Yang X, Hegde VL, Rao R, Zhang J, Nagarkatti PS, Nagarkatti M (2014) Histone modifications are associated with Delta9-tetrahydrocannabinol-mediated alterations in antigen-specific T cell responses. J Biol Chem 289:18707–18718

    CAS  PubMed  Google Scholar 

  • Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12

    PubMed Central  PubMed  Google Scholar 

  • Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O’Donnell D (2003) Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Euro J Neurosci 17:2750–2754

    Google Scholar 

Download references

Acknowledgments

We apologize in advance to all investigators whose research could not be appropriately cited owing to space limitations. We wish to thank Professor Alessandro Finazzi Agrò and Professor Giorgio Bernardi for their continuing support to our studies on cannabinoid signaling. Financial support from Fondazione Italiana Sclerosi Multipla (FISM grant 2013/R/8) to V.C., and from Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN grant 2010–2011) to M.M. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Maccarrone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiurchiù, V., Leuti, A. & Maccarrone, M. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses. J Neuroimmune Pharmacol 10, 268–280 (2015). https://doi.org/10.1007/s11481-015-9584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-015-9584-2

Keywords

Navigation