Skip to main content

Advertisement

Log in

Tau-Directed Immunotherapy: A Promising Strategy for Treating Alzheimer’s Disease and Other Tauopathies

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Immunotherapy directed against tau is a promising treatment strategy for Alzheimer’s Disease (AD) and tauopathies. We review initial studies on tau-directed immunotherapy, and present data from our laboratory testing antibodies using the rTg4510 mouse model, which deposits tau in forebrain neurons. Numerous antibodies have been tested for their efficacy in treating both pathology and cognitive function, in different mouse models, by different routes of administration, and at different ages or durations. We report, here, that the conformation-specific antibody MC-1 produces some degree of improvement to both cognition and pathology in rTg4510. Pathological improvements as measured by Gallyas staining for fully formed tangles and phosphorylated tau appeared 4 days after intracranial injection into the hippocampus. We also examined markers for microglial activation, which did not appear impacted from treatment. Behavioral effects were noted after continuous infusion of antibodies into the lateral ventricle for approximately 2 weeks. We examined basic motor skills, which were not impacted by treatment, but did note cognitive improvements with both novel object and radial arm water maze testing. Our results support earlier reports in the initial review presented here, and collectively show promise for this strategy of treatment. The general absence of extracellular tau deposits may avoid the opsonization and phagocytosis mechanisms activated by antibodies against amyloid, and make anti tau approaches a safer method of immunotherapy for Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agadjanyan MG, Petrovsky N, Ghochikyan A (2015) A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer’s disease. Alzheimer’s Dementia: J Alzheimer’s Assoc. doi: 10.1016/j.jalz.2015.06.1884

  • Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27:9115–9129

    Article  CAS  PubMed  Google Scholar 

  • Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB, Donoghue S (2005) Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 64:94–101

    Article  CAS  PubMed  Google Scholar 

  • Bi M, Ittner A, Ke YD, Gotz J, Ittner LM (2011) Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS One 6, e26860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Billiau A, Matthys P (2001) Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J Leukoc Biol 70:849–860

    CAS  PubMed  Google Scholar 

  • Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H (2010) Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 224:472–485

    Article  CAS  PubMed  Google Scholar 

  • Boutajangout A, Quartermain D, Sigurdsson EM (2010) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30:16559–16566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2011) Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 118:658–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33:403–408

    Article  CAS  PubMed  Google Scholar 

  • Brownlow ML, Joly-Amado A, Azam S, Elza M, Selenica ML, Pappas C, Small B, Engelman R, Gordon MN, Morgan D (2014) Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behav Brain Res 271:79–88

    Article  CAS  PubMed  Google Scholar 

  • Brunden KR, Zhang B, Carroll J, Yao Y, Potuzak JS, Hogan AM, Iba M, James MJ, Xie SX, Ballatore C, Smith AB 3rd, Lee VM, Trojanowski JQ (2010) Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 30:13861–13866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carty N, Lee D, Dickey C, Ceballos-Diaz C, Jansen-West K, Golde TE, Gordon MN, Morgan D, Nash K (2010) Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. J Neurosci Methods 194:144–153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Kayed R (2014a) Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis 40(Suppl 1):S97–S111

    PubMed  Google Scholar 

  • Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett AD, Dineley KT, Jackson GR, Kayed R (2014b) Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 34:4260–4272

    Article  PubMed  Google Scholar 

  • Castrillo JI, Oliver SG (2016) Alzheimer’s as a systems-level disease involving the interplay of multiple cellular networks. Methods Mol Biol (Clifton, NJ) 1303:3–48

    Article  Google Scholar 

  • Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, Buckner N, Hanmer J, Davies P, O'Neill MJ, Hutton ML, Citron M (2011) Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem 286:34457–34467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9:387–398

    Article  CAS  PubMed  Google Scholar 

  • ClinicalTrials.gov identifier: NCT01850238, Axon Neuroscience SE (2013)

  • Collin L, Bohrmann B, Gopfert U, Oroszlan-Szovik K, Ozmen L, Gruninger F (2014) Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain: J Neurol 137:2834–2846

    Article  Google Scholar 

  • d'Abramo C, Acker C, Jimenez H, Davies P (2013) Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS ONE 8:10

    Google Scholar 

  • Denk F, Wade-Martins R (2009) Knock-out and transgenic mouse models of tauopathies. Neurobiol Aging 30:1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ding WX, Yin XM (2008) Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4:141–150

    Article  CAS  PubMed  Google Scholar 

  • Espinoza M, de Silva R, Dickson DW, Davies P (2008) Differential incorporation of tau isoforms in Alzheimer’s disease. J Alzheimers Dis 14:1–16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fontaine SN, Rauch JN, Nordhues BA, Assimon VA, Stothert AR, Jinwal UK, Sabbagh JJ, Chang L, Stevens SM Jr, Zuiderweg ER, Gestwicki JE, Dickey CA (2015) Isoform-selective genetic inhibition of constitutive cytosolic Hsp70 activity promotes client Tau degradation using an altered co-chaperone complement. J Biol Chem 290:13115–13127

    Article  CAS  PubMed  Google Scholar 

  • Ghochikyan A, Mkrtichyan M, Petrushina I, Movsesyan N, Karapetyan A, Cribbs DH, Agadjanyan MG (2006) Prototype Alzheimer’s disease epitope vaccine induced strong Th2-type anti-Abeta antibody response with Alum to Quil A adjuvant switch. Vaccine 24:2275–2282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gotz J, Ittner A, Ittner LM (2012) Tau-targeted treatment strategies in Alzheimer’s disease. Br J Pharmacol 165:1246–1259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guerrero-Munoz MJ, Castillo-Carranza DL, Kayed R (2014) Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins. Biochem Pharmacol 88:468–478

    Article  CAS  PubMed  Google Scholar 

  • Halle M, Tribout-Jover P, Lanteigne AM, Boulais J, St-Jean JR, Jodoin R, Girouard MP, Constantin F, Migneault A, Renaud F, Didierlaurent AM, Mallett CP, Burkhart D, Pilorget A, Palmantier R, Larocque D (2015) Methods to monitor monocytes-mediated amyloid-beta uptake and phagocytosis in the context of adjuvanted immunotherapies. J Immunol Methods 424:64–79

    Article  CAS  PubMed  Google Scholar 

  • Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI (2012) Tau as a therapeutic target in neurodegenerative disease. Pharmacol Ther 136:8–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68:1067–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI (2012) Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem 287:19440–19451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Jackson GR, Kayed R (2011a) Tau oligomers as potential target for immunotherapy for Alzheimer disease and tauopathies. Curr Alzheimer Res 8:659–665

    Article  CAS  PubMed  Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R (2011b) Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 6:39

    Article  PubMed Central  PubMed  Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R (2012a) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Scientific Reports 2:700

    Article  PubMed Central  PubMed  Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R (2012b) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J: Off Publ Federation Am Soc Exp Biol 26:1946–1959

    Article  CAS  Google Scholar 

  • Lashley T, Rohrer JD, Mead S, Revesz T (2015) Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol. doi: 10.1111/nan.12250

  • Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  • Lemere CA (2013) Immunotherapy for Alzheimer’s disease: hoops and hurdles. Mol Neurodegener 8:36

    Article  PubMed Central  PubMed  Google Scholar 

  • Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul MM, M. Baker, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P and Hutton M (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405

  • Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harbor Perspectives Med 2:a006247

    Article  Google Scholar 

  • Mandelkow EM, Schweers O, Drewes G, Biernat J, Gustke N, Trinczek B, Mandelkow E (1996) Structure, microtubule interactions, and phosphorylation of tau protein. Ann N Y Acad Sci 777:96–106

    Article  CAS  PubMed  Google Scholar 

  • Medeiros R, Baglietto-Vargas D, LaFerla FM (2011) The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci Ther 17:514–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan D (2011) Immunotherapy for Alzheimer’s disease. J Intern Med 269:54–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oddo S, Caccamo A, Cheng D, LaFerla FM (2009) Genetically altering Abeta distribution from the brain to the vasculature ameliorates tau pathology. Brain Pathol 19:421–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O'Leary JC 3rd, Li Q, Marinec P, Blair LJ, Congdon EE, Johnson AG, Jinwal UK, Koren J 3rd, Jones JR, Kraft C, Peters M, Abisambra JF, Duff KE, Weeber EJ, Gestwicki JE, Dickey CA (2010) Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol Neurodegener 5:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54

    Article  CAS  PubMed  Google Scholar 

  • Ragupathi G, Damani P, Deng K, Adams MM, Hang J, George C, Livingston PO, Gin DY (2010) Preclinical evaluation of the synthetic adjuvant SQS-21 and its constituent isomeric saponins. Vaccine 28:4260–4267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenmann H, Grigoriadis N, Karussis D, Boimel M, Touloumi O, Ovadia H, Abramsky O (2006) Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal Tau protein. Arch Neurol 63:1459–1467

    Article  PubMed  Google Scholar 

  • Rozenstein-Tsalkovich L, Grigoriadis N, Lourbopoulos A, Nousiopoulou E, Kassis I, Abramsky O, Karussis D, Rosenmann H (2013) Repeated immunization of mice with phosphorylated-tau peptides causes neuroinflammation. Exp Neurol 248:451–456

    Article  CAS  PubMed  Google Scholar 

  • Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selenica ML, Brownlow M, Jimenez JP, Lee DC, Pena G, Dickey CA, Gordon MN, Morgan D (2013) Amyloid oligomers exacerbate tau pathology in a mouse model of tauopathy. Neuro-Degenerative Dis 11:165–181

    Article  CAS  Google Scholar 

  • Selenica ML, Davtyan H, Housley SB, Blair LJ, Gillies A, Nordhues BA, Zhang B, Liu J, Gestwicki JE, Lee DC, Gordon MN, Morgan D, Dickey CA (2014) Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis. J Neuroinflammation 11:152

    Article  PubMed Central  PubMed  Google Scholar 

  • Sigurdsson EM (2008) Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis 15:157–168

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sigurdsson EM (2009) Tau-focused immunotherapy for Alzheimer’s disease and related tauopathies. Curr Alzheimer Res 6:446–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sperling R, Salloway S, Brooks DJ, Tampieri D, Barakos J, Fox NC, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Lieberburg I, Arrighi HM, Morris KA, Lu Y, Liu E, Gregg KM, Brashear HR, Kinney GG, Black R, Grundman M (2012) Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol 11:241–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sui D, Liu M, Kuo MH (2015) In vitro aggregation assays using hyperphosphorylated tau protein. J Vis Exp 2(95):e51537

  • Troquier L, Caillierez R, Burnouf S, Fernandez-Gomez FJ, Grosjean ME, Zommer N, Sergeant N, Schraen-Maschke S, Blum D, Buee L (2012) Targeting phospho-Ser422 by active Tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res 9:397–405

    Article  PubMed Central  PubMed  Google Scholar 

  • Utton MA, Noble WJ, Hill JE, Anderton BH, Hanger DP (2005) Molecular motors implicated in the axonal transport of tau and alpha-synuclein. J Cell Sci 118:4645–4654

    Article  CAS  PubMed  Google Scholar 

  • Walls KC, Ager RR, Vasilevko V, Cheng D, Medeiros R, LaFerla FM (2014) p-Tau immunotherapy reduces soluble and insoluble tau in aged 3xTg-AD mice. Neurosci Lett 575:96–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Mandelkow E (2012) Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans 40:644–652

    Article  CAS  PubMed  Google Scholar 

  • Wang JZ, Gao X, Wang ZH (2014) The physiology and pathology of microtubule-associated protein tau. Essays Biochem 56:111–123

    Article  PubMed  Google Scholar 

  • Wilcock DM, Colton CA (2008) Anti-amyloid-beta immunotherapy in Alzheimer’s disease: relevance of transgenic mouse studies to clinical trials. J Alzheimers Dis 15:555–569

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilcock DM, Rojiani A, Rosenthal A, Levkowitz G, Subbarao S, Alamed J, Wilson D, Wilson N, Freeman MJ, Gordon MN, Morgan D (2004) Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci 24:6144–6151

    Article  CAS  PubMed  Google Scholar 

  • Wilcock DM, Jantzen PT, Li Q, Morgan D, Gordon MN (2007) Amyloid-beta vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid. Neuroscience 144:950–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wisniewski T, Boutajangout A (2010) Immunotherapeutic approaches for Alzheimer’s disease in transgenic mouse models. Brain Struct Funct 214:201–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolfe MS (2012) The role of tau in neurodegenerative diseases and its potential as a therapeutic target. Scientifica 2012:796024

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB, Holmes BB, Binder LI, Mandelkow EM, Diamond MI, Lee VM, Holtzman DM (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31:13110–13117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yanamandra K, Kfoury N, Jiang H, Mahan TE, Ma S, Maloney SE, Wozniak DF, Diamond MI, Holtzman DM (2013) Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80:402–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu X, Luo Y, Dinkel P, Zheng J, Wei G, Margittai M, Nussinov R, Ma B (2012) Cross-seeding and conformational selection between three- and four-repeat human Tau proteins. J Biol Chem 287:14950–14959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Peter Davies for the generous gifts of monoclonal antibodies MC-1, PHF1 and DA9, for the treatments reported above. We also thank the vivarium staff at the USF Health Byrd Alzheimer’s Disease Institute for their help in maintaining the health and care of our mouse colony, including maintaining ethical standards and compliance as described in the “Guide for the Care and Use of Laboratory Animals” in an AAALAC-accredited facility. All procedures using mice were approved by the Institutional Animal Care and Use Committee of the University of South Florida. All applicable international, and/or institutional guidelines for the care and use of animals were followed. This work was supported by NS076308 and by the USF Health Byrd Alzheimer’s Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave Morgan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroeder, S.K., Joly-Amado, A., Gordon, M.N. et al. Tau-Directed Immunotherapy: A Promising Strategy for Treating Alzheimer’s Disease and Other Tauopathies. J Neuroimmune Pharmacol 11, 9–25 (2016). https://doi.org/10.1007/s11481-015-9637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-015-9637-6

Keywords

Navigation