Skip to main content
Log in

An oscillatory correlation model of auditory streaming

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

We present a neurocomputational model for auditory streaming, which is a prominent phenomenon of auditory scene analysis. The proposed model represents auditory scene analysis by oscillatory correlation, where a perceptual stream corresponds to a synchronized assembly of neural oscillators and different streams correspond to desynchronized oscillator assemblies. The underlying neural architecture is a two-dimensional network of relaxation oscillators with lateral excitation and global inhibition, where one dimension represents time and another dimension frequency. By employing dynamic connections along the frequency dimension and a random element in global inhibition, the proposed model produces a temporal coherence boundary and a fissure boundary that closely match those from the psychophysical data of auditory streaming. Several issues are discussed, including how to represent physical time and how to relate shifting synchronization to auditory attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almonte F, Jirsa VK, Large EW, Tuller B (2005) Integration and segregation in auditory streaming. Physica D 212:137–159

    Article  Google Scholar 

  • Arbib MA (ed) (2003) Handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge MA

    Google Scholar 

  • Baird B (1997) A cortical model of cognitive 40 Hz attentional streams, rhythmic expectation, and auditory stream segregation. In Proceedings of the 19th Ann Conf Cog Sci Soc, pp 25–30

  • Barth DS, MacDonald KD (1996) Thalamic modulation of high-frequency oscillating potentials in auditory cortex. Nature 383:78–81

    Article  PubMed  CAS  Google Scholar 

  • Beauvois MW, Meddis R (1991) A computer model of auditory stream segregation. Quart J Exp Psychol 43A(3):517–541

    Google Scholar 

  • Beauvois MW, Meddis R (1996) Computer simulation of auditory stream segregation in alternating-tone sequences. J Acoust Soc Am 99:2270–2280

    Article  PubMed  CAS  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis. MIT Press, Cambridge MA

    Google Scholar 

  • Bregman AS, Campbell J (1971) Primary auditory stream segregation and perception of order in rapid sequences of tones. J Exp Psychol 89:244–249

    Article  PubMed  CAS  Google Scholar 

  • Brosch M, Budinger E, Scheich H (2002) Stimulus-related gamma oscillations in primate auditory cortex. J Neurophysiol 87:2715–2725

    PubMed  Google Scholar 

  • Brown GJ (2003) Auditory scene analysis. In: Arbib MA (ed) Handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge MA

    Google Scholar 

  • Brown GJ, Cooke MP (1998) Temporal synchronisation in a neural oscillator model of primitive auditory stream segregation. In: Rosenthal D, Okuno H (eds) Computational auditory scene analysis. Lawrence Erlbaum, Mahwah NJ

    Google Scholar 

  • Brown GJ, Wang DL (2006) Neural and perceptual modeling. In: Wang DL, Brown GJ (eds) Computational auditory scene analysis: principles, algorithms, and Applications. Wiley & IEEE Press, Hoboken NJ

    Google Scholar 

  • Cavallini F (1993) Fitting a logistic curve to data. Coll Math J 24:247–253

    Article  Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975–979

    Article  Google Scholar 

  • Crooks RL, Stein J (1991) Psychology: science, behavior, and life. Holt, Rinehart and Winston, Fort Worth TX

  • de Cheveigne A (2006) Multiple F0 estimation. In: Wang DL, Brown GJ (eds) Computational auditory scene analysis: principles, algorithms, and Applications. Wiley & IEEE Press, Hoboken NJ

    Google Scholar 

  • deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381:610–613

    Article  PubMed  CAS  Google Scholar 

  • Eckhorn R et al (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex. Biol Cybernet 60:121–130

    Article  CAS  Google Scholar 

  • Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT (2005) High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 94:4269–4280

    Article  PubMed  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in models of nerve membrane. Biophys J 1:445–466

    PubMed  CAS  Google Scholar 

  • Fries P, Nikolic D, Singer W (2007) The gamma cycle. Trend Neurosci 30:309–316

    Article  PubMed  CAS  Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563

    Article  PubMed  CAS  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6:1216–1223

    Article  PubMed  CAS  Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78:2643–2647

    Article  PubMed  CAS  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  PubMed  CAS  Google Scholar 

  • Helmholtz H (1863) On the sensation of tone (Ellis AJ, Trans.), Second English edn. Dover Publishers, New York

  • Hu G, Wang DL (2007) Auditory segmentation based on onset and offset analysis. IEEE Trans Audio Speech Lang Process 15:396–405

    Article  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 61:468–486

    Google Scholar 

  • Joliot M, Ribary U, Llinas R (1994) Human oscillatory brain activity near to 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 91:11748–11751

    Article  PubMed  CAS  Google Scholar 

  • Jones MR, Jagacinski RJ, Yee W, Floyd RL, Klapp ST (1995) Tests of attentional flexibility in listening to polyrhythmic patterns. J Exp Psychol: Human Percept Perform 21(2):293–307

    Article  CAS  Google Scholar 

  • Jones MR, Kidd G, Wetzel R (1981) Evidence for rhythmic attention. J Exp Psychol: Human Percept Perform 7(5):1059–1073

    Article  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (1991) Principles of neural science, 3rd edn. Elsevier, New York

    Google Scholar 

  • Large EW, Jones MR (1999) The dynamics of attending: how we track time-varying events. Psychol Rev 106:119–159

    Article  Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception. Experientia 7:128–134

    Article  PubMed  CAS  Google Scholar 

  • Linden JF, Liu RC, Sahani M, Schreiner CE, Merzenich MM (2003) Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. J Neurophysiol 90:2660–2675

    Article  PubMed  Google Scholar 

  • Linsay PS, Wang DL (1998) Fast numerical integration of relaxation oscillator networks based on singular limit solutions. IEEE Trans Neural Net 9:523–532

    Article  CAS  Google Scholar 

  • Llinas R, Ribary U (1993) Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci USA 90:2078–2082

    Article  PubMed  CAS  Google Scholar 

  • Madler C, Pöppel E (1987) Auditory evoked potentials indicate the loss of neuronal oscillations during general anesthesia. Naturwiss 74:42–43

    Article  PubMed  CAS  Google Scholar 

  • Mäkelä JP, Hari R (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 66:539–546

    Article  PubMed  Google Scholar 

  • Maldonado PE, Gerstein GL (1996) Neuronal assembly dynamics in the rat auditory cortex during reorganization induced by intracortical microstimulation. Exp Brain Res 112:431–441

    PubMed  CAS  Google Scholar 

  • McAdams S, Bregman AS (1979) Hearing musical streams. Comp Mus J 3:26–43

    Google Scholar 

  • McCabe SL, Denham MJ (1997) A model of auditory streaming. J Acoust Soc Am 101:1611–1621

    Article  Google Scholar 

  • Miller GA, Heise GA (1950) The trill threshold. J Acoust Soc Am 22:637–638

    Article  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213

    Article  PubMed  CAS  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070

    Article  Google Scholar 

  • Norris M (2003) Assessment and extension of Wang’s oscillatory model of auditory stream segregation. Ph.D. Dissertation, University of Queensland School of Information Technology and Electrical Engineering

  • Pashler HE (1998) The psychology of attention. MIT Press, Cambridge MA

    Google Scholar 

  • Pichevar R, Rouat J (2007) Monophonic sound source separation with an unsupervised network of spiking neurones. Neurocomputing 71:109–120

    Article  Google Scholar 

  • Pickles JO (1988) An introduction to the physiology of hearing, 2nd edn. Academic Press, London

    Google Scholar 

  • Popper AN, Fay RR (eds) (1992) The mammalian auditory pathway: neurophysiology. Springer-Verlag, New York

    Google Scholar 

  • Ribary U et al (1991) Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci USA 88:11037–11041

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski R, Shackleton TM, Schnupp JWH, Wallace MN, Palmer AR (2002) Spectrotemporal receptive field properties of single units in the primary, dorsocaudal, ventrorostral auditory cortex of the guinea pig. Audiol Neurootol 7:214–227

    Article  PubMed  Google Scholar 

  • Shadlen MN, Movshon JA (1999) Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24:67–77

    Article  PubMed  CAS  Google Scholar 

  • Smith LS (1994) Sound segmentation using onsets and offsets. J New Music Res 23:11–23

    Google Scholar 

  • Taylor K, Mandon S, Freiwald WA, Kreiter AK (2005) Coherent oscillatory activity in monkey area V4 predicts successful allocation of attention. Cereb Cortex 15:1424–1437

    Article  PubMed  CAS  Google Scholar 

  • Terman D, Wang DL (1995) Global competition and local cooperation in a network of neural oscillators. Physica D 81:148–176

    Article  Google Scholar 

  • van der Pol B (1926) On ‘relaxation oscillations’. Philos Mag 2(11):978–992

    Google Scholar 

  • van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. Ph.D. Dissertation, Eindhoven University of Technology

  • von der Malsburg C (1981) The correlation theory of brain function. Internal Report 81-2, Max-Planck-Institute for Biophysical Chemistry (Reprinted in Models of neural networks II, Domany E, van Hemmen JL, Schulten K (eds). Springer, Berlin, 1994)

  • von der Malsburg C, Schneider W (1986) A neural cocktail-party processor. Biol Cybern 54:29–40

    Article  PubMed  Google Scholar 

  • Wang DL (1995) Emergent synchrony in locally coupled neural oscillators. IEEE Trans Neural Net 6(4):941–948

    Article  CAS  Google Scholar 

  • Wang DL (1996) Primitive auditory segregation based on oscillatory correlation. Cognit Sci 20:409–456

    Article  Google Scholar 

  • Wang DL (1999) Relaxation oscillators and networks. In: Webster J (ed) Encyclopedia of electrical and electronic engineers. Wiley, New York

    Google Scholar 

  • Wang DL (2003) Temporal pattern processing. In: Arbib MA (ed) Handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge MA

    Google Scholar 

  • Wang DL (2005) The time dimension for scene analysis. IEEE Trans Neural Net 16:1401–1426

    Article  Google Scholar 

  • Wang DL, Brown GJ (1999) Separation of speech from interfering sounds based on oscillatory correlation. IEEE Trans Neural Net 10:684–697

    Article  CAS  Google Scholar 

  • Wang DL, Brown GJ (eds) (2006) Computational auditory scene analysis: principles, algorithms, and applications. Wiley & IEEE Press, Hoboken NJ

    Google Scholar 

  • Wang DL, Terman D (1995) Locally excitatory globally inhibitory oscillator networks. IEEE Trans Neural Net 6(1):283–286

    Article  CAS  Google Scholar 

  • Warren RM (1999) Auditory perception: a new analysis and synthesis. Cambridge University Press, New York

    Google Scholar 

  • Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733–736

    Article  PubMed  CAS  Google Scholar 

  • Wrigley SN, Brown GJ (2004) A computational model of auditory selective attention. IEEE Trans Neural Net 15:1151–1163

    Article  Google Scholar 

  • Yost WA (1997) The cocktail party problem: forty years later. In: Gilkey RH, Anderson TR (eds) Binaural and spatial hearing in real and virtual environments. Lawrence Erlbaum, Mahwah, NJ

    Google Scholar 

Download references

Acknowledgement

This research was supported in part by an AFRL grant via Veridian and an AFOSR Grant (FA9550-04-01-0117). We thank Z. Jin for his assistance in figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DeLiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Chang, P. An oscillatory correlation model of auditory streaming. Cogn Neurodyn 2, 7–19 (2008). https://doi.org/10.1007/s11571-007-9035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-007-9035-8

Keywords

Navigation