Skip to main content
Log in

MMN responses during implicit processing of changes in emotional prosody: an ERP study using Chinese pseudo-syllables

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In this study, we tested the underlying mechanisms of early emotional prosody perception, especially examined whether change detection in oddball paradigm was caused by emotional category and physical properties. Using implicit oddball paradigms, the current study manipulated the cues for detecting deviant stimuli from standards in three conditions: the simultaneous changes in emotional category and physical properties (EP condition), change in emotional category alone (E condition), and change in physical properties alone (P condition). ERP results revealed that physical property change increased brain responses to deviant stimuli in the EP than in the E condition at early stage 90–160 ms, suggesting that physical property change of emotional sounds can also be detected at the early stage. At the later stage 160–260 ms, the simultaneous and respective changes in emotional category and physical properties were reliably detected, and the sum of the brain responses to the corresponding changes in E and P conditions was equal to the brain responses to the simultaneous changes in EP condition. Source analysis further revealed that stimuli-driven regions (inferior parietal lobule), temporal and frontal cortices were activated at early stage, while only frontal cortices for higher cognitive processing were activated at later stage. These findings suggest that emotional prosody changes in physical properties and emotion category are perceived as domain-general change information in emotional prosody perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7:268–277

    Article  PubMed  CAS  Google Scholar 

  • Bach DR, Grandjean D, Sander D, Herdener M, Strik WK et al (2008) The effect of appraisal level on processing of emotional prosody in meaningless speech. Neuroimage 42:919–927

    Article  PubMed  Google Scholar 

  • Boulenger V, Hoen M, Jacquier C, Meunier F (2011) Interplay between acoustic/phonetic and semantic processes during spoken sentence comprehension: an ERP study. Brain Lang 116:51–63

    Article  PubMed  Google Scholar 

  • Brosch T, Grandjean D, Sander D, Scherer KR (2008) Behold the voice of wrath: cross-modal modulation of visual attention by anger prosody. Cognition 106:1497–1503

    Article  PubMed  Google Scholar 

  • Brosch T, Grandjean D, Sander D, Scherer KR (2009) Cross-modal emotional attention: emotional voices modulate early stages of visual processing. J Cogn Neurosci 21:1670–1679

    Article  Google Scholar 

  • Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315:1860–1862

    Article  PubMed  CAS  Google Scholar 

  • Campanella S, Gaspard C, Debatisse D, Bruyer R, Crommelinck M et al (2002) Discrimination of emotional facial expressions in a visual oddball task: an ERP study. Biol Psychol 59:171–186

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Yang Y (2012) When brain differentiates happy from neutral in prosody? In: Speech prosody, 6th international conference. Shanghai

  • Dietrich S, Ackermann H, Szameitat DP, Alter K (2006) Psychoacoustic studies on the processing of vocal interjections: how to disentangle lexical and prosodic information? Prog Brain Res 156:295–302

    Article  PubMed  Google Scholar 

  • Du Y, He Y, Ross B, Bardouille T, Wu X et al (2011) Human auditory cortex activity shows additive effects of spectral and spatial cues during speech segregation. Cereb Cortex 21:698–707

    Article  PubMed  Google Scholar 

  • Ethofer T, Dimitri VDV, Klaus S, Patrik V (2009a) Decoding of emotional information in voice-sensitive cortices. Curr Biol 19:1028–1033

    Article  PubMed  CAS  Google Scholar 

  • Ethofer T, Kreifelts B, Wiethoff S, Wolf J, Grodd W et al (2009b) Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. J Cogn Neurosci 21:1255–1268

    Article  PubMed  Google Scholar 

  • Ethofer T, Bretscher J, Gschwind M, Kreifelts B, Wildgruber D et al (2012) Emotional voice areas: anatomic location, functional properties, and structural connections revealed by combined fMRI/DTI. Cereb Cortex 22:191–200

    Article  PubMed  Google Scholar 

  • Frühholz S, Grandjean D (2012) Towards a fronto-temporal neural network for the decoding of angry vocal expressions. NeuroImage 62:1658–1666

    Article  PubMed  Google Scholar 

  • Gandour J, Wong D, Dzemidzic M, Lowe M, Tong Y et al (2003) A cross-linguistic fMRI study of perception of intonation and emotion in Chinese. Hum Brain Mapp 18:149–157

    Article  PubMed  Google Scholar 

  • Goydke KN, Altenmüller E, Möller J, Münte TF (2004) Changes in emotional tone and instrumental timbre are reflected by the mismatch negativity. Cogn Brain Res 21:351–359

    Article  Google Scholar 

  • Grandjean D, Sander D, Pourtois G, Schwartz S, Seghier ML et al (2005) The voices of wrath: brain responses to angry prosody in meaningless speech. Nat Neurosci 8:145–146

    Article  PubMed  CAS  Google Scholar 

  • Grossmann T, Striano T, Friederici AD (2005) Infants’ electric brain responses to emotional prosody. NeuroReport 16:1825–1828

    Article  PubMed  Google Scholar 

  • Hoekert M, Bais L, Kahn RS, Aleman A (2008) Time course of the involvement of the right anterior superior temporal gyrus and the right fronto-parietal operculum in emotional prosody perception. PLoS One 3:e2244

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacquemot C, Pallier C, LeBihan D, Dehaene S, Dupoux E (2003) Phonological grammar shapes the auditory cortex: a functional magnetic resonance imaging study. J Neurosci 23:9541–9546

    PubMed  CAS  Google Scholar 

  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611

    Article  PubMed  Google Scholar 

  • Kimura M, Katayama J, Ohira H, Schröger E (2009) Visual mismatch negativity: new evidence from the equiprobable paradigm. Psychophysiology 46:402–409

    Article  PubMed  Google Scholar 

  • Korpilahti P, Krause CM, Holopainen I, Lang AH (2001) Early and late mismatch negativity elicited by words and speech-like stimuli in children. Brain Lang 76:332–339

    Article  PubMed  CAS  Google Scholar 

  • Kujala T, Lepisto T, Nieminen-von WT, Naatanen P, Naatanen R (2005) Neurophysiological evidence for cortical discrimination impairment of prosody in Asperger syndrome. Neurosci Lett 383:260–265

    Article  PubMed  CAS  Google Scholar 

  • Leitman DI, Wolf DH, Ragland JD, Laukka P, Loughead J et al (2010) “It’s not what you say, but how you say it”: a reciprocal temporo-frontal network for affective prosody. Front Hum Neurosci 4:19

    PubMed  PubMed Central  Google Scholar 

  • Liu T, Pinheiro AP, Deng G, Nestor PG, McCarley RW et al (2012) Electrophysiological insights into processing nonverbal emotional vocalizations. NeuroReport 23:108

    Article  PubMed  Google Scholar 

  • Müller BW, Jüptner M, Jentzen W, Müller SP (2002) Cortical activation to auditory mismatch elicited by frequency deviant and complex novel sounds: a PET study. Neuroimage 17:231–239

    Article  PubMed  Google Scholar 

  • Näätänen R, Paavilainena P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590

    Article  PubMed  Google Scholar 

  • Näätänen R, Kujala T, Winkler IN (2010) Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48:4–22

    Article  PubMed  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

    PubMed  Google Scholar 

  • Pinheiro AP, Galdo-Álvarez S, Rauber A, Sampaio A, Niznikiewicz M et al (2011) Abnormal processing of emotional prosody in Williams syndrome: an event-related potentials study. Res Dev Disabil 32:133–147

    Article  PubMed  Google Scholar 

  • Sander D, Grandjean D, Pourtois G, Schwartz S, Seghier ML et al (2005) Emotion and attention interactions in social cognition: brain regions involved in processing anger prosody. Neuroimage 28:848–858

    Article  PubMed  Google Scholar 

  • Sauter DA, Eimer M (2010) Rapid detection of emotion from human vocalizations. J Cogn Neurosci 22:474–481

    Article  PubMed  Google Scholar 

  • Schirmer A, Kotz SA (2006) Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends Cogn Sci 10:24–30

    Article  PubMed  Google Scholar 

  • Schirmer A, Striano T, Friederici AD (2005) Sex differences in the preattentive processing of vocal emotional expressions. Neuroreport 16:635–639

    Article  PubMed  Google Scholar 

  • Thierry G, Roberts MV (2007) Event-related potential study of attention capture by affective sounds. Neuroreport 18:245–248

    Article  PubMed  Google Scholar 

  • Thönnessen H, Boers F, Dammers J, Chen Y-H, Norra C et al (2010) Early sensory encoding of affective prosody: neuromagnetic tomography of emotional category changes. Neuroimage 50:250–259

    Article  PubMed  Google Scholar 

  • Utama NP, Takemoto A, Koike Y, Nakamura K (2009) Phased processing of facial emotion: an ERP study. Neurosci Res 64:30–40

    Article  PubMed  Google Scholar 

  • Wildgruber D, Riecker A, Hertrich I, Erb M, Grodd W et al (2005) Identification of emotional intonation evaluated by fMRI. Neuroimage 24:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • Wildgruber D, Ethofer T, Grandjean D, Kreifelts B (2009) A cerebral network model of speech prosody comprehension. Int J Speech-Lang Pathol 11:277–281

    Article  Google Scholar 

  • Zevin JD, Yang J, Skipper JI, McCandliss BD (2010) Domain general change detection accounts for “dishabituation” effects in temporal-parietal regions in functional magnetic resonance imaging studies of speech perception. J Neurosci 30:1110–1117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (31070989), Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning (CNKOPYB0909). The authors would like to thank Xuhai Chen and Shuzhen Gan for data collection and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, A., Yang, J. & Yang, Y. MMN responses during implicit processing of changes in emotional prosody: an ERP study using Chinese pseudo-syllables. Cogn Neurodyn 8, 499–508 (2014). https://doi.org/10.1007/s11571-014-9303-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-014-9303-3

Keywords

Navigation