Skip to main content
Log in

Over-expression of VEGF and MMP-9 in residual tumor cells of hepatocellular carcinoma after embolization with lipidol

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The expression and implication of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) in residual hepatic tumor cells after lipiodol embolization were investigated. Two weeks after transplantation of VX2 tumor cells into the livers of rabbits, a xenograft model of the human hepatic neoplasm was successfully established. Forty rabbits were randomly divided into control group (n=20) and lipiodol group (n=20). For the control group, 1 mL normal saline was injected through the gastroduodenal artery, whereas 0.3 mL/kg lipiodol was applied for the lipiodol group. One week after embolization, the expression level of VEGF in the plasma was measured by using enzyme-linked immunosorbent assay (ELISA). A three-step immunohistochemical technique (ABC) was employed to detect the protein levels of VEGF and MMP-9 and the quantitative PCR for their mRNA levels was performed in the residual tumor cells. The VEGF in the plasma was significantly higher in the lipiodol group (1.42±0.29 ng/mL) than in the control group (1.12±0.21 ng/mL) (P<0.01). Moreover, the positive rate of VEGF protein in the residual tumor cells was significantly higher in the lipiodol group (62.13%±7.69%) than in the control group (53.16%±9.17%) (P<0.05). Similarly, the MMP-9 expression in the residual tumor cells was higher in the lipiodol group. The mRNA levels of VEGF (2.9313±2.4231) and MMP-9 (3.5721±1.6107) in the lipiodol group were significantly higher than those in the control group (1.5728±0.9453 and 1.7573±1.0641, respectively, P<0.05). Therefore, it was reasonable to speculate that the increased expression of VEGF and MMP-9 in residual hepatic tumor cells and tumor angiogenesis post-embolization would be responsible for the increased metastatic potentiality and invasiveness of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semela D, Heim M. Hepatocellular carcinoma. Ther Umsch, 2011,68(4):213–217

    Article  PubMed  Google Scholar 

  2. Takavasu K, Arii S, Ikai I, et al. Prospective cohort study of transarterial chemoembolization for unresectable hepatocellular carcinoma in 8510 patients. Gastroenterology, 2006,131(2):461–469

    Article  Google Scholar 

  3. Song MJ, Park CH, Kim JD, et al. Drug-eluting bead loaded with doxorubicin versus conventional lipiodol-based transarterial chemoembolization in the treatment of hepatocellular carcinoma: a case-control study of Asian patients. Eur J Gastroenterol Hepatol, 2011,23(6):521–527

    Article  PubMed  CAS  Google Scholar 

  4. Okabe K, Beppu T, Haraoka K, et al. Safety and short-term therapeutic effects of miriplatin-lipiodol suspension in transarterial chemoembolization (TACE) for hepatocellular carcinoma. Anticancer Res, 2011,31(9):2983–2988

    PubMed  CAS  Google Scholar 

  5. Sergio A, Cristofori C, Cardin R, et al. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): the role of angiogenesis and invasiveness. Am J Gastroenterol, 2008,103(4):914–921

    Article  PubMed  Google Scholar 

  6. Mareel M, Constantino S. Ecosystems of invasion and metastasis in mammary morphogenesis and cancer. Int J Dev Biol, 2011,55(7–9):671–684

    Article  PubMed  Google Scholar 

  7. Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med, 2011,17(11):1359–1370

    Article  PubMed  CAS  Google Scholar 

  8. Shen YC, Hsu C, Cheng AL. Molecular targeted therapy for advanced hepatocellular carcinoma: current status and future perspectives. J Gastroenterol, 2010,45(8):794–807

    Article  PubMed  CAS  Google Scholar 

  9. Chen L, Shi Y, Jiang CY, et al. Coexpression of PDGFR-alpha, PDGFR-beta and VEGF as a prognostic factor in patients with hepatocellular carcinoma. Int J Biol Markers, 2011,26(2):108–116

    Article  PubMed  CAS  Google Scholar 

  10. Sullu Y, Demirag GG, Yildirim A, et al. Matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in invasive ductal carcinoma of the breast. 2 (MMP-2) and MMP-9 expression in invasive ductal carcinoma of the breast. Pathol Res Pract, 2011,207(12):747–753

    Article  PubMed  CAS  Google Scholar 

  11. Xiang ZL, Zeng ZC, Fan J, et al. Gene expression profiling of fixed tissues identified hypoxia-inducible factor-1α, VEGF, and matrix metalloproteinase-2 as biomarkers of lymph node metastasis in hepatocellular carcinoma. Clin Cancer Res, 2011,17(16):5463–5472

    Article  PubMed  CAS  Google Scholar 

  12. Bausch D, Pausch T, Krauss T, et al. Neutrophil granulocyte-derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis, 2011,14(3):235–243

    Article  PubMed  CAS  Google Scholar 

  13. Gu T, Li CX, Feng Y, et al. Trans-arterial gene therapy for hepatocellular carcinoma in a rabbit model. World J Gastroenterol, 2007,13(14):2113–2117

    PubMed  CAS  Google Scholar 

  14. Ke S, Ding XM, Kong J, et al. Low temperature of radiofrequency ablation at the target sites can facilitate rapid progression of residual hepatic VX2 carcinoma. J Transl Med, 2010,8:73–83

    Article  PubMed  Google Scholar 

  15. Xu T, Chen XP, Li D, et al. Expression of EMMPRIN in rabbit VX2 liver tumor tissue and significance. Zhonghua Shiyan Waike Zazi (Chinese), 2007,24(1):37–39

    CAS  Google Scholar 

  16. Xu T, Chen XP, Guo YX, et al. Expression of MT1-MMP and its significance in rabbit VX2 tumor tissues after transarterial embolization with hydroxyapatite nanoparticles. Zhonghua Waike Zazi (Chinese), 2008,46(8):606–609

    Google Scholar 

  17. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med, 2005,9(4):777–794

    Article  PubMed  CAS  Google Scholar 

  18. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005,69(3):4–10

    Article  PubMed  CAS  Google Scholar 

  19. Chen Y, Jiang L, She F, et al. Vascular endothelial growth factor-C promotes the growth and invasion of gallbladder cancer via an autocrine mechanism. Mol Cell Biochem, 2010,345(1–2):77–89

    Article  PubMed  CAS  Google Scholar 

  20. Kolev Y, Uetake H, Iida S, et al. Prognostic significance of VEGF expression in correlation with COX-2, microvessel density, and clinicopathological characteristics in human gastric carcinoma. Ann Surg Oncol, 2007,14(10):2738–2747

    Article  PubMed  Google Scholar 

  21. Zhu AX, Duda DG, Sahani DV, et al. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol, 2011,8(5):292–301

    Article  PubMed  CAS  Google Scholar 

  22. Huang X, Huang S, Zhang F, et al. Lentiviral-mediated Smad4 RNAi promotes SMMC-7721 cell migration by regulation of MMP-2, VEGF and MAPK signaling. Mol Med Report, 2010,3(2):295–299

    PubMed  CAS  Google Scholar 

  23. Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis, 2008,25(6):593–600

    Article  PubMed  CAS  Google Scholar 

  24. Morrison C, Mancini S, Cipollone J, et al. Microarray and proteomic analysis of breast cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis. J Biol Chem, 2011,286(39):34 271–34 285

    Article  CAS  Google Scholar 

  25. Golubkov VS, Chekanov AV, Savinov AY, et al. Membrane type-1 matrix metalloproteinase confers aneuploidy and tumorigenicity on mammary epithelial cells. Cancer Res, 2006,66(21):10 460–10 465

    Article  CAS  Google Scholar 

  26. Hu F, Wang C, Guo S, et al. δEF1 promotes osteolytic metastasis of MDA-MB-231 breast cancer cells by regulating MMP-1 expression. Biochim Biophys Acta, 2011,1809(3):200–210

    Article  PubMed  CAS  Google Scholar 

  27. Zhang W, Yang HC, Wang Q, et al. Clinical value of combined detection of serum matrix metalloproteinase-9, heparanase, and cathepsin for determining ovarian cancer invasion and metastasis. Anticancer Res, 2011,31(10):3423–3428

    PubMed  CAS  Google Scholar 

  28. der Jagt MF, Wobbes T, Strobbe LJ, et al. Metalloproteinases and their regulators in colorectal cancer. J Surg Oncol, 2010,101(3):259–269

    PubMed  Google Scholar 

  29. Bendardaf R, Buhmeida A, Hilska M, et al. MMP-9 (gelatinase B) expression is associated with disease-free survival and disease-specific survival in colorectal cancer patients. Cancer Invest, 2010,28(1):38–43

    Article  PubMed  CAS  Google Scholar 

  30. Chen JS, Wang Q, Fu XH, et al. Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: Association with MMP-9. Hepatol Res, 2009,39(2):177–186

    Article  PubMed  CAS  Google Scholar 

  31. Saharinen P, Eklund L, Pulkki K, et al. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med, 2011,17(7):347–362

    Article  PubMed  CAS  Google Scholar 

  32. Van Hinsbergh VW, Eaglse MA, Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol, 2006,26(4):716–728

    Article  PubMed  Google Scholar 

  33. Tsai MY, Yang RC, Wu HT, et al. Anti-angiogenic effect of Tanshinone IIA involves inhibition of matrix invasion and modification of MMP-2/TIMP-2 secretion in vascu lar endothelial cells. Cancer Lett, 2011,310(2):198–206

    Article  PubMed  CAS  Google Scholar 

  34. Kim CH, Lee JH, Won JH, et al. Mesenchymal stem cells improve wound healing in vivo via early activation of matrix metalloproteinase-9 and vascular endothelial growth factor. J Korean Med Sci, 2011,26(6):726–733

    Article  PubMed  CAS  Google Scholar 

  35. Ortega N, Wang K, Ferrara N, et al. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation. Dis Model Mech, 2010,3(3–4):224–235

    Article  PubMed  CAS  Google Scholar 

  36. Yang P, Yuan W, He J, et al. Overexpression of EphA2, MMP-9, and MVD-CD34 in hepatocellular carcinoma: Implications for tumor progression and prognosis. Hepatol Res, 2009,39(12):1169–1177

    Article  PubMed  Google Scholar 

  37. Man K, Ng KT, Xu A, et al. Suppression of liver tumor growth and metastasis by adiponectin in nude mice through inhibition of tumor angiogenesis and downregulation of Rho kinase/IFN-inducible protein 10/matrix metalloproteinase 9 signaling. Clin Cancer Res, 2010,16(3):967–977

    Article  PubMed  CAS  Google Scholar 

  38. Hou YK, Wang Y, Cong WM, et al. Expression of tumor metastasis-suppressor gene KiSS-1 and matrix metalloproteinase-9 in portal vein tumor thrombus of hepatocellular carcinoma. Ai Zheng, 2007,26(6):591–595

    PubMed  CAS  Google Scholar 

  39. Zhang Q, Chen X, Zhou J, et al. CD147, MMP-2, MMP-9 and MVD-CD34 are significant predictors of recurrence after liver transplantation in hepatocellular carcinoma patients. Cancer Biol Ther, 2006,5(7):808–814

    Article  PubMed  CAS  Google Scholar 

  40. Takavasu K, Arii S, Ikai I, et al. Prospective cohort study of transarterial chemoembolization for unresectable hepatocellular carcinoma in 8510 patients. Gastroenterology, 2006,131(2):461–469

    Article  Google Scholar 

  41. Liapi E, Georgiades CC, Hong K, et al. Transcatheter arterial chemoembolization: current technique and future promise. Tech Vasc Interv Radiol, 2007,10(1):2–11

    Article  PubMed  Google Scholar 

  42. Wang B, Xu H, Gao ZQ, et al. Increased expression of vascular endothelial growth factor in hepatocellular carcinoma after transcatheter arterial chemoembolization. Acta Radiol, 2008,49(5):523–529

    Article  PubMed  CAS  Google Scholar 

  43. Shim JH, Park JW, Kim JH, et al. Association between increment of serum VEGF level and prognosis after transcatheter arterial chemoembolization in hepatocellular carcinoma patients. Cancer Sci, 2008, 99(10):2037–2044

    PubMed  CAS  Google Scholar 

  44. Rhee TK, Young JY, Larson AC, et al. Effect of transcatheter arterial embolization on levels of hypoxia-inducible factor-1alpha in rabbit VX2 liver tumors. J Vasc Interv Radiol, 2011,18(5):639–645

    Article  Google Scholar 

  45. Deng G, Zhao DL, Li GC, et al. Combination therapy of transcatheter arterial chemoembolization and arterial administration of antiangiogenesis on VX2 liver tumor. Cardiovasc Intervent Radiol, 2011,34(4):824–832

    Article  PubMed  Google Scholar 

  46. Janani P, Sivakumari K, Geetha A, et al. Bacoside A downregulates matrix metalloproteinases 2 and 9 in DEN-induced hepatocellular carcinoma. Cell Biochem Funct, 2010,28(2):164–169

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Xu  (徐 涛) or Xiao-ping Chen  (陈孝平).

Additional information

This project was supported by grants from the Natural Science Foundation of Shandong Province of China (No. Y2007C102), and the Medical Science and Technology Development Foundation of Shandong Province of China (No. 2007H2071).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Yl., Xu, T., Li, Lp. et al. Over-expression of VEGF and MMP-9 in residual tumor cells of hepatocellular carcinoma after embolization with lipidol. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 90–95 (2013). https://doi.org/10.1007/s11596-013-1077-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1077-z

Key words

Navigation