Skip to main content
Log in

Involvement of endoplasmic reticulum stress in apoptosis of testicular cells induced by low-dose radiation

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The study examined the role of endoplasmic reticulum stress (ERS) and signaling pathways of inositol-requiring enzyme-1 (IRE1), RNA-activated protein kinase-like ER kinase (PERK) and activating transcription factor-6 (ATF6) in apoptosis of mouse testicular cells treated with low-dose radiation (LDR). In the dose-dependent experiment, the mice were treated with whole-body X-ray irradiation at different doses (25, 50, 75, 100 or 200 mGy) and sacrificed 12 h later. In the time-dependent experiment, the mice were exposed to 75 mGy X-ray irradiation and killed at different time points (3, 6, 12, 18 or 24 h). Testicular cells were harvested for experiments. H2O2 and NO concentrations, and Ca2+-ATPase activity were detected by biochemical assays, the calcium ion concentration ([Ca2+]i) by flow cytometry using fluo-3 probe, and GRP78 mRNA and protein expressions by quantitative real-time RT-PCR (qRT-PCR) and Western blotting, respectively. The mRNA expressions of S-XBP1, JNK, caspase-12 and CHOP were measured by qRT-PCR, and the protein expressions of IRE1α, S-XBP1, p-PERK, p-eIF2α, ATF6 p50, p-JNK, pro-caspase-12, cleaved caspase-12 and CHOP by Western blotting. The results showed that the concentrations of H2O2 and NO, the mRNA expressions of GRP78, S-XBP1, JNK, caspase-12 and CHOP, and the protein expressions of GRP78, S-XBP1, IRE1α, p-PERK, p-eIF2α, ATF6 p50, p-JNK, pro-caspase-12, cleaved caspase-12 and CHOP were significantly increased in a time- and dose-dependent manner after LDR. But the [Ca2+]i and Ca2+-ATPase activities were significantly decreased in a time- and dose-dependent manner. It was concluded that the ERS, regulated by IRE1, PERK and ATF6 pathways, is involved in the apoptosis of testicular cells in LDR mice, which is associated with ERS-apoptotic signaling molecules of JNK, caspase-12 and CHOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feinendegen LE. Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol, 2005,78(925):3–7

    Article  PubMed  CAS  Google Scholar 

  2. Cai L. Research of the adaptive response induced by low-dose radiation: where have we been and where should we go? Hum Exp Toxicol, 1999,18(7):419–425

    Article  PubMed  CAS  Google Scholar 

  3. Lee SJ, Choi SA, Cho CK, et al. Adaptive response is differently induced depending on the sensitivity to radiation-induced cell death in mouse epidermal cells. Cell Biol Toxicol, 2000,16(3):175–184

    Article  PubMed  CAS  Google Scholar 

  4. Gong SL, Liu SC, Liu JX, et al. Adaptive response of thymocyte apoptosis and cell cycle progression induced by low dose X-ray irradiation in mice. Biomed Environ Sci, 2000,13(3):180–188

    PubMed  CAS  Google Scholar 

  5. Joksic G, Petrović S. Lack of adaptive response of human lymphocytes exposed in vivo to low doses of ionizing radiation. J Environ Pathol Toxicol Oncol, 2004, 23(3):195–206

    Article  PubMed  Google Scholar 

  6. Scott BR. Low-dose-radiation stimulated natural chemical and biological protection against lung cancer. Dose Response, 2008,6(3):299–318

    Article  PubMed  CAS  Google Scholar 

  7. Cheng GH, Wu N, Jiang DF, et al. Increased levels of p53 and PARP-1 in EL-4 cells probably related with the immune adaptive response induced by low dose ionizing radiation in vitro. Biomed Environ Sci, 2010,23(6):487–495

    Article  PubMed  CAS  Google Scholar 

  8. Liu G, Gong P, Zhao H, et al. Effect of low-level radiation on the death of male germ cells. Radiat Res, 2006,165(4):379–389

    Article  PubMed  CAS  Google Scholar 

  9. Liu G, Gong P, Bernstein LR, et al. Apoptotic cell death induced by low-dose radiation in male germ cells: hormesis and adaptation. Crit Rev Toxicol, 2007,37(7): 587–605

    Article  PubMed  CAS  Google Scholar 

  10. Hamer G, Gademan IS, Kal HB, et al. Role for c-Abl and p73 in the radiation response of male germ cells. Oncogene, 2001,20(32):4298–4304

    Article  PubMed  CAS  Google Scholar 

  11. Koji T, Hishikawa Y. Germ cell apoptosis and its molecular trigger in mouse testes. Arch Histol Cytol, 2003,66(1):1–16

    Article  PubMed  Google Scholar 

  12. Sinha Hikim AP, Lue Y, Diaz-Romero M, et al. Deciphering the pathways of germ cell apoptosis in the testis. J Steroid Biochem Mol Biol, 2003,85(2–5):175–182

    Article  PubMed  CAS  Google Scholar 

  13. Richburg JH. The relevance of spontaneous- and chemically-induced alterations in testicular germ cell apoptosis to toxicology. Toxicol Lett, 2000,112–113:79–86

    Article  PubMed  Google Scholar 

  14. Cisternas P, Moreno RD. Comparative analysis of apoptotic pathways in rat, mouse, and hamster spermatozoa. Mol Reprod De, 2006,73(10):1318–1325

    Article  CAS  Google Scholar 

  15. Stambolsky P, Weisz L, Shats I, et al. Regulation of AIF expression by p53. Cell Death Differ, 2006,13(12): 2140–2149

    Article  PubMed  CAS  Google Scholar 

  16. Morales E, Ferrer C, Zuasti A, et al. Apoptosis and mo lecular pathways in the seminiferous epithelium of aged and photoinhibited Syrian hamsters (Mesocricetus auratus). J Androl, 2007,28(1):123–135

    Article  PubMed  CAS  Google Scholar 

  17. Bozec A, Chuzel F, Chater S, et al. The mitochondrial-dependent pathway is chronically affected in testicular germ cell death in adult rats in utero to anti-androgens. J Endocrinol, 2004,183(1):79–90

    Article  PubMed  CAS  Google Scholar 

  18. Harding HP, Calfon M, Urano F, et al. Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol, 2002, 18:575–599

    Article  PubMed  CAS  Google Scholar 

  19. Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res, 2005,569(1–2):29–63

    PubMed  Google Scholar 

  20. Li XD, Lankinen H, Putkuri N, et al. Tula hantavirus triggers pro-apoptotic signals of ER stress in Vero E6 cells. Virology, 2005,333(1):180–189

    Article  PubMed  CAS  Google Scholar 

  21. Schröder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci, 2008, 65(6):862–894

    Article  PubMed  Google Scholar 

  22. Rao RV, Bredesen DE. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol, 2004,16(6):653–662

    Article  PubMed  CAS  Google Scholar 

  23. Wu HC, Chiu CS, Wu JL, et al. Zebrafish antiapoptotic protein zfBcl-xL can block betanodavirus protein alpha-induced mitochondria-mediated secondary necrosis cell death. Fish Shellfish Immunol, 2008,24(4):436–449

    Article  PubMed  CAS  Google Scholar 

  24. Austin RC. The unfolded protein response in health and disease. Antioxid Redox Signal, 2009,11(9):2279–2287

    Article  PubMed  CAS  Google Scholar 

  25. Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis, 2009,14(8):996–1007

    Article  PubMed  Google Scholar 

  26. Rutkowski DT, Wu J, Back SH, et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell, 2008,15(6):829–840

    Article  PubMed  CAS  Google Scholar 

  27. Wang G, Yang ZQ, Zhang K. Endoplasmic reticulum stress response in cancer: molecular mechanism and therapeutic potential. Am J Transl Res, 2010,2(1):65–74

    PubMed  Google Scholar 

  28. Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda), 2007,22:193–201

    Article  CAS  Google Scholar 

  29. Li Y, Guo C, Wang Z, et al. Enhanced effects of TRAIL-endostatin-based double-gene-radiotherapy on suppressing growth, promoting apoptosis and inducing cell cycle arrest in vascular endothelial cells. J Huazhong Univ Sci Technolog [Med Sci], 2012,32(2):167–172

    Article  CAS  Google Scholar 

  30. Liu JF, Yang WH, Fong YC, et al. BFPP, a phloroglucinol derivative, induces cell apoptosis in human chondrosarcoma cells through endoplasmic reticulum stress. Biochem Pharmacol, 2010,79(10):1410–1417

    Article  PubMed  CAS  Google Scholar 

  31. van der Sanden MH, Houweling M, van Golde LM, et al. Inhibition of phosphatidylcholine synthesis induces expression of the endoplasmic reticulum stress and apoptosis-related protein CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153). Biochem J, 2003,369(Pt 3):643–650

    PubMed  Google Scholar 

  32. Zhang Y, Liu W, Ma C, et al. Endoplasmic reticulum stress contributes to CRH-induced hippocampal neuron apoptosis. Exp Cell Res, 2012,318(6):732–740

    Article  PubMed  CAS  Google Scholar 

  33. Zhu H, Zhu H, Xiao S, et al. Activation and crosstalk between the endoplasmic reticulum road and JNK pathway in ischemia-reperfusion brain injury. Acta Neurochir (Wien), 2012,154(7):1197–1203

    Article  Google Scholar 

  34. Lee AS. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem, 2001,26(8): 504–510

    Article  CAS  Google Scholar 

  35. Lambrot R, Coffigny H, Pairault C, et al. High radiosensitivity of germ cells in human male fetus. J Clin Endocrinol Metab, 2007,92(7):2632–2639

    Article  PubMed  CAS  Google Scholar 

  36. Nagamori I, Yomogida K, Ikawa M, et al. The testes-specific bZip type transcription factor Tisp40 plays a role in ER stress responses and chromatin packaging during spermiogenesis. Genes Cells, 2006,11(10):1161–1171

    Article  PubMed  CAS  Google Scholar 

  37. Tabuchi Y, Takasaki I, Kondo T. Identification of genetic networks involved in the cell injury accompanying endoplasmic reticulum stress induced by bisphenol A in testicular Sertoli cells. Biochem Biophys Res Commun, 2006,345(3):1044–1050

    Article  PubMed  CAS  Google Scholar 

  38. Zhao Y, Tan Y, Dai J, et al. Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol Lett, 2011,200(1–2):100–106

    Article  PubMed  CAS  Google Scholar 

  39. Xue X, Piao JH, Nakajima A, et al. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem, 2005,280(40):33917–33925

    Article  PubMed  CAS  Google Scholar 

  40. Asahi J, Kamo H, Baba R, et al. Bisphenol A induces endoplasmic reticulum stress-associated apoptosis in mouse non-parenchymal hepatocytes. Life Sci, 2010,87(13–14):431–438

    Article  PubMed  CAS  Google Scholar 

  41. Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell, 2003, 11(3):619–633

    Article  PubMed  CAS  Google Scholar 

  42. Bergner A, Huber RM. Regulation of the endoplasmic reticulum Ca(2+)-store in cancer. Anticancer Agents Med Chem, 2008,8(7):705–709

    Article  PubMed  CAS  Google Scholar 

  43. Brostrom MA, Brostrom CO. Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium, 2003,34(4–5):345–363

    Article  PubMed  CAS  Google Scholar 

  44. Dragosits M, Stadlmann J, Graf A, et al. The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomic, 2010,11:207

    Article  Google Scholar 

  45. Kadowaki H, Nishitoh H, Ichijo H. Survival and apoptosis signals in ER stress: the role of protein kinases. J Chem Neuroanatomy, 2004,28(1–2):93–100

    Article  CAS  Google Scholar 

  46. Raven JF, Koromilas AE. PERK and PKR: old kinases learn new tricks. Cell Cycle, 2008, 7(9):1146–1150

    Article  PubMed  CAS  Google Scholar 

  47. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest, 2005,115(10):2656–2564

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Fang  (方 芳) or Shou-liang Gong  (龚守良).

Additional information

Both authors contributed equally to this work.

This work was supported by the grants from the National Natural Science Foundation of China (No. 30970681) and Basic Research and Operating Expenses of Jilin University (No. 200903116).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Zc., Wang, Jf., Li, Yb. et al. Involvement of endoplasmic reticulum stress in apoptosis of testicular cells induced by low-dose radiation. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 551–558 (2013). https://doi.org/10.1007/s11596-013-1157-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1157-0

Key words

Navigation