Skip to main content
Log in

Downregulation of LncRNAH19 and MiR-675 promotes migration and invasion of human hepatocellular carcinoma cells through AKT/GSK-3β/Cdc25A signaling pathway

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

LncRNAH19 has been implicated as having both oncogenic and tumor suppression properties in cancer. LncRNAH19 transcripts also serve as a precursor for miR-675. However, it is unknown whether LncRNAH19 and miR-675 are involved in the migration and invasion of hepatocellular carcinoma (HCC) cells. The purpose of this study was to investigate the effect and mechanism of LncRNAH19 and miR-675 on migration and invasion of HCC cells. The migration and invasion of HCC cells were measured by Transwell migration and invasion assays after transfection of HCC cells with miR-675 inhibitors and LncRNAH19siRNA. The levels of LncRNAH19 and miR-675 were detected by quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR), and the protein expression of AKT, GSK-3β and Cdc25A by Western blotting analysis. The expression levels of LncRNAH19 and miR-675 were higher in MHCC-97H cells than in L02, Huh-7 and HepG2 cells. Transwell migration assay revealed that the miR-675 inhibitor and LncRNAH19siRNA could significantly increase the migration of HCC cells (P<0.01) as compared with the control group. Transwell invasion assay demonstrated that the miR-675 inhibitor and LncRNAH19siRNA could significantly increase the invasion of HCC cells (P<0.01) as compared with the control group. Western blotting analysis showed that the expression levels of AKT and Cdc25A were significantly increased (P<0.05), and the expression level of GSK-3β was significantly decreased (P<0.05) after treatment with miR-675 inhibitors and LncRNAH19siRNA as compared with the control group. These findings suggested that inhibition of LncRNAH19 and miR-675 expression can promote migration and invasion of HCC cells via AKT/GSK-3β/Cdc25A signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010, 127(12):2893–2917

    Article  CAS  PubMed  Google Scholar 

  2. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer, 2006, 6(4):259–269

    Article  CAS  PubMed  Google Scholar 

  3. Huang S, He X. The role of microRNAs in liver cancer progression. Br J Cancer, 2011, 104(2):235–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wong QW, Ching AK, Chan AW, et al. MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res, 2010, 16(3): 867–875

    Article  CAS  PubMed  Google Scholar 

  5. Yao J, Liang L, Huang S, et al. MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology, 2010, 51(3): 846–856

    CAS  PubMed  Google Scholar 

  6. Xia H, Ooi LL, Hui KM. MiR-214 targets β-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One, 2012, 7(9):e44206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Huarte M, Rinn JL. Large non-coding RNAs: missing links in cancer? Hum Mol Genet, 2010, 19 (R2):152–161

    Article  Google Scholar 

  8. Lai MC, Yang Z, Zhou L, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol, 2012, 29(3):1810–1816

    Article  CAS  PubMed  Google Scholar 

  9. Geng YJ, Xie SL, Li Q, et al. Large intervening non-coding RNAHOTAIR is associated with hepatocellular carcinoma progression. J Int Med Res, 2011, 39(6): 2119–2128

    Article  CAS  PubMed  Google Scholar 

  10. Matouk IJ, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One, 2007, 2(9):e845

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wu J, Qin Y, Li B, et al. Hypomethylated and hypermethylated profiles of H19DMR are associated with the aberrant imprinting of IGF2 and H19 in human hepatocellular carcinoma. Genomics, 2008, 91(5):443–450

    Article  CAS  PubMed  Google Scholar 

  12. Chen CL, Lp SM, Cheng D, et al. Loss of imprinting of the IGF-II and H19 genes in epithelial ovarian cancer. Clin Cancer Res, 2000, 6(2):474–479

    CAS  PubMed  Google Scholar 

  13. Nakagawa H, Chadwick RB, Peltomaki P, et al. Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc Natl Acad Sci USA, 2001, 98(2):591–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary micro-RNA precursor. RNA, 2007, 13(3): 313–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wendel HG, De Stanchina E, Fridman JS, et al. Survival signaling by Akt and eIF4E in oncogenesis and cancer therapy. Nature, 2004, 428(6980):332–337

    Article  CAS  PubMed  Google Scholar 

  16. Cross DA, Alessi DR, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995, 378(6559):785–789

    Article  CAS  PubMed  Google Scholar 

  17. Kang T, Wei Y, Honaker Y, et al. GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell, 2008, 13(1):36–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kristjánsdóttir K, Rudolph J. Cdc25 phosphatases and cancer. Chem Biol, 2004, 11(8):1043–1051

    Article  PubMed  Google Scholar 

  19. Du Y, Kong G, You X, et al. Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus x protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem, 2012, 287(31): 26302–26311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tsang WP, Ng EK, Ng SS, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis, 2010, 31(3):350–358

    Article  CAS  PubMed  Google Scholar 

  21. Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature, 1991, 351(6322): 153–155

    Article  CAS  PubMed  Google Scholar 

  22. Ayesh S, Matouk I, Schneider T, et al. Possible physiological role of H19 RNA. Mol Carcinog, 2002, 35(2): 63–74

    Article  CAS  PubMed  Google Scholar 

  23. Luo M, Li Z, Wang W, et al. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett, 2013, 333(2):213–221

    Article  CAS  PubMed  Google Scholar 

  24. Luo M, Li Z, Wang W, et al. Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J, 2013, 280(7):1709–1716

    Article  CAS  PubMed  Google Scholar 

  25. Hao Y, Crenshaw T, Moulton T, et al. Tumour-suppressor activity of H19 RNA. Nature, 1993, 365(6448):764–767

    Article  CAS  PubMed  Google Scholar 

  26. Zhang L, Yang F, Yuan JH, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis, 2013, 34(3):577–586

    Article  PubMed  Google Scholar 

  27. Tripathi V, Shen Z, Chakraborty A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet, 2013, 9(3):e1003368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Blomberg I, Hoffmann I. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol, 1999, 19(9):6183–6194

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Molinari M, Mercurio C, Dominguez J, et al. Human Cdc25A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep, 2000, 1(1):71–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yang C, Li X, Wang Y, et al. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene, 2012, 496(1):8–16

    Article  CAS  PubMed  Google Scholar 

  31. Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol, 2001, 2(10):769–776

    Article  CAS  PubMed  Google Scholar 

  32. Puc J, Keniry M, Li HS, et al. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell, 2005, 7(2):193–204

    Article  CAS  PubMed  Google Scholar 

  33. Shtivelman E, Sussman J, Stokoe D. A role for PI3-kinase and PKB activity in the G2/M phase of the cell cycle. Curr Biol, 2002, 12(11):919–924

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-hui Huang  (黄晓卉) or Qian Wang  (汪 谦).

Additional information

This project was supported by grants from the National Natural Science Foundation of China (Nos. 81071871, 81101862 and 81172079), Natural Science Foundation of Guangdong Province, China (Nos. S2013010016831, and 10451008901006014), Science and Technology Planning Project of Guangdong Province, China (No. 2009B030801014, 2010B060500007 and 2011B060300012), the Foundation of the Health Department of Guangxi Province, China (No. Z2007212), the Foundation of Scientific Research and Technology Development Project of Guilin, China (key scientific and technological projects and trial production of new products, No. 20110321), the Foundation of Scientific Research and Technology Development Project of Guangxi Province, China (No. GuiKeGong1355005-3-5), and Foundation for Youth Teacher by Sun Yat-Sen University (No. 11ykpy16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Ma, L., Chen, Xl. et al. Downregulation of LncRNAH19 and MiR-675 promotes migration and invasion of human hepatocellular carcinoma cells through AKT/GSK-3β/Cdc25A signaling pathway. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 363–369 (2014). https://doi.org/10.1007/s11596-014-1284-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1284-2

Key words

Navigation