Skip to main content

Advertisement

Log in

Matrix synthesis by bladder smooth muscle cells is modulated by stretch frequency

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The bladder is a physically active organ that undergoes periodic stretching as a part of its normal function. To determine the role that stretching or mechanical deformation may play in altering the synthetic phenotype of bladder wall cells, a series of experiments were carried out to quantify several extracellular matrix (ECM) messenger ribonucleic acids (mRNAs) and their corresponding protein levels after mechanical challenge. Bladder smooth muscle cells were grown on distensible membranes in an apparatus that can reliably and reproducibly subject cells to well-characterized periods of mechanical stretching. For this study, cultured bovine bladder cells were subjected to cyclic mechanical deformation of varying frequencies to determine if this variable altered ECM expression. Using this experimental system, we demonstrated that smooth muscle cells were acutely sensitive to mechanical deformation and showed alteration in the synthesis of the major fibrillar collagens, types I and III. Concomitant analyses of mRNA in these cells show that levels of type I collagen correlate with mRNA levels at all frequencies except at 60 cycles/min, and, thus, type I production appears to be transcriptionally regulated. Interestingly, type III protein levels do not correlate with mRNA measurements except at 20 cycles/min, and, therefore, a different regulatory mechanism likely governs type III production. These studies demonstrate that smooth muscle cell ECM secretory phenotype can be altered by the frequency of mechanical deformation experienced by the cells. These data support the concept that stretching of the bladder wall affects the secretory phenotype of smooth muscle cells and can result in an altered ECM composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo, A. D.; Bowser, S. S.; Gerritsen, M. E.; Bizios, R. Morphological and proliferative responses of endothelial cells to hydrostatic pressure: role of fibroblast growth factor. J. Cell Physiol. 157(3):603–614; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Baskin, L. S.; Howard, P. S.; Duckett, J. W.; Snyder, H. M.; Macarak, E. J. Bladder smooth muscle cells in culture: I. Identification and characterization. J. Urol. 149(1):190–197; 1993a.

    PubMed  CAS  Google Scholar 

  • Baskin, L. S.; Howard, P. S.; Macarak, E. Effect of physical forces on bladder smooth muscle and urothelium. J. Urol. 150(2, Pt. 2):601–607; 1993b.

    PubMed  CAS  Google Scholar 

  • Carver, W.; Nagpal, M. L.; Nachtigal, M.; Borg, T. K.; Terracio, L. Collagen expression in mechanically stimulated cardiac fibroblasts. Circ. Res. 69(1):116–122; 1991.

    PubMed  CAS  Google Scholar 

  • Chaqour, B.; Howard, P. S.; Richards, C. F.; Macarak, E. J. Mechanical stretch induces platelet-activating factor receptor gene expression through the NF-kappaB transcription factor. J. Mol. Cell. Cardiol. 31(7):1345–1355; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Chien, S.; Li, S.; Shyy, Y. J. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31(1, Pt. 2):162–169; 1998.

    PubMed  CAS  Google Scholar 

  • Chien, S.; Shyy, Y. J. Effects of hemodynamic forces on gene expression and signal transduction in endothelial cells. Biol. Bull. 194(3):390–391, 392–393 (discussion): 1998.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162(1):156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Coplen, D. E.; Howard, P. S.; Duckett, J. W.; Snyder, H. M.; Macarak, E. J. Characterization of a fibroblast cell from the urinary bladder wall. In Vitro Cell. Dev. Biol. 30A(9):604–608; 1994.

    CAS  Google Scholar 

  • Dennis, E. A.; Rhee, S. G.; Billah, M. M.; Hannun, Y. A. Role of phospholipase in generating lipid second messengers in signal transduction. FASEB J. 5(7):2068–2077; 1991.

    PubMed  CAS  Google Scholar 

  • Deveaud, C. M.; Macarak, E. J.; Kucich, U.; Ewalt, D. H.; Abrams, W. R.; Howard, P. S. Molecular analysis of collagens in bladder fibrosis. J. Urol. 160(4):1518–1527; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Engvall, E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 70(A):419–439; 1980.

    PubMed  CAS  Google Scholar 

  • Ewalt, D. H.; Howard, P. S.; Blyth, B.; Snyder, H. M.; Duckett, J. W.; Levin, R. M.; Macarak, E. J. Is lamina propria matrix responsible for normal bladder compliance? J. Urol. 148(2, Pt. 2):544–549; 1992.

    PubMed  CAS  Google Scholar 

  • Gorfien, S. F.; Howard, P. S.; Myers, J. C.; Macarak, E. J. Cyclic biaxial strain of pulmonary artery endothelial cells causes an increase in cell layer-associated fibronectin. Am. J. Respir. Cell Mol. Biol. 3:421–429; 1990.

    PubMed  CAS  Google Scholar 

  • Gorfien, S. F.; Winston, F. K.; Thibault, L. E.; Macarak, E. J. Effects of biaxial deformation on pulmonary artery endothelial cells. J. Cell. Physiol. 139:492–500; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Khachigian, L. M.; Resnick, N.; Gimbrone, M. A. Jr.; Collins, T. Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J. Clin. Invest. 96(2):1169–1175; 1995.

    PubMed  CAS  Google Scholar 

  • Komuro, I.; Katoh, Y.; Hoh, E.; Takaku, F.; Yazaki, Y. Mechanisms of cardiac hypertrophy and injury—possible role of protein kinase C activation. Jpn. Circ. J. 55(11):1149–1157; 1991.

    PubMed  CAS  Google Scholar 

  • Lambert, C. A.; Soudant, E. P.; Nusgens, B. V.; Lapiere, C. M. Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces. Lab. Invest. 66(4):444–451; 1992.

    PubMed  CAS  Google Scholar 

  • Lansman, J. B.; Hallam, T. J.; Rink, T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325(6107):811–813; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Milner, P.; Bodin, P.; Loesch, A.; Burnstock, G. Rapid release of endothelin and ATP from isolated aortic endothelial cells exposed to increased flow. Biochem. Biophys. Res. Commun. 170(2):649–656; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Murray, T. R.; Marshall, B. E.; Macarak, E. J. Contraction of vascular smooth muscle in cell culture. J. Cell. Physiol. 143(1):26–38; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Myers, J. C.; Howard, P. S.; Jelen, A. M.; Dion, A. S.; Macarak, E. J. Duplication of type IV collagen COOH-terminal repeats and species-specific expression of alpha 1(IV) and alpha 2(IV) collagen genes [published erratum appears in J Biol. Chem. 262(29):14372; October 15, 1987] J. Biol. Chem. 262(19):9231–9238; 1987.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308(5961):693–698; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Resnick, N.; Gimbrone, M. A., Jr. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J. 9(10):874–882; 1995.

    PubMed  CAS  Google Scholar 

  • Ruwhof, C.; van der Laarse, A. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc. Res. 47(1):23–37; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Esteban, J.; Tsai, S. W.; Sang, J.; Qin, J.; Torday, J. S.; Rubin, L. P. Effects of mechanical forces on lung-specific gene expression. Am. J. Med. Sci. 316(3):200–204; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Skalli, O.; Ropraz, P.; Trzeciak, A.; Benzonana, G.; Gillessen, D.; Gabbiani, G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103(6, Pt. 2) 2787–2796; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Sumpio, B. E.; Widmann, M. D.; Ricotta, J.; Awolesi, M. A.; Watase, M. Increased ambient pressure stimulates proliferation and morphologic changes in cultured endothelial cells. J. Cell Physiol. 158(1):133–139; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sun, T. T.; Doran, T. I.; Vidrich, A. The use of antikeratin antibodies for the identification of cultured epithelial cells. Birth Defects Orig. Artic. Ser. 16(2):183–196; 1980.

    PubMed  CAS  Google Scholar 

  • Tozzi, C. A.; Poiani, G. J.; Harangozo, A. M.; Boyd, C. D.; Riley, D. J. Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J. Clin. Invest. 84(3):1005–1012; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, E.; Mai, Q.; Sudhir, K.; Weiss, R. H.; Ives, H. E. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J. Cell Biol. 123(3):741–747; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Winston, F. K.; Macarak, E. J.; Gorfien, S. F.; Thibault, L. E. A system to reproduce and quantify the biomechanical environment of the cell. J. Appl. Physiol. 67(1):397–405; 1989.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela S. Howard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coplen, D.E., Macarak, E.J. & Howard, P.S. Matrix synthesis by bladder smooth muscle cells is modulated by stretch frequency. In Vitro Cell.Dev.Biol.-Animal 39, 157–162 (2003). https://doi.org/10.1007/s11626-003-0010-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-003-0010-3

Key words

Navigation