Skip to main content
Log in

Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer, or parthenogenetic activation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Tools and methods for analyzing differences in embryos resulting from somatic cell nuclear transfer (NT) in comparison to those derived from normal fertilization are needed to define better the nature of the nuclear reprogramming that occurs after NT. To this end, a collection of bovine blastocyst-derived cell lines was created. In vitro expanded or hatched blastocysts, used as primary culture tissue, were from NT; in vitro maturation, fertilization, and culture (IVF); or parthenogenetic (P) activation. Also, five in vivo-fertilized and developed blastocysts were collected by uterine flushing on the eighth d postfertilization. Whole blastocysts were physically attached to STO feeder layers to initiate all of the cell lines generated. The majority of the cell lines in the collection are trophectoderm, 38 NT-derived, 6 in vivo-derived, 20 IVF-derived, and 13 P-derived. Trophectoderm identity was ascertained by morphology and, in many cases, interferon-tau production. Several visceral endoderm cell lines and putative parietal endoderm cell lines were also established. At approximately 5% efficiency, epiblast masses from NT and IVF blastocysts survived and were isolated in culture. Two epiblast masses were also isolated from P blastocysts. Spontaneous differentiation from the epiblast outgrowths resulted in the establishment of fibroblast cell lines. The use of the trophectoderm cell lines as a comparative in vitro model of bovine trophectoderm and placental function is discussed in relation to NT reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Bourc’his, D.; Le Bourhis, D.; Patin, D., et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol. 11: 1542–1546; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Brand, A.; Trounson, A.O.; Aarts, M.H.; Drost, M.; Zaayer, D. Superovulation and non-surgical embryo recovery in the lactating dairy cow. Anim. Prod. 26: 55–60; 1978.

    Article  Google Scholar 

  • Cezar, G.G.; Bartolomei, M.S.; Forsberg, E.J., et al. Genome-wide epigenetic alterations in cloned bovine fetuses. Biol. Reprod. 68: 1009–1014; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M.C. Development of bovine blastocyst with a note on implantation. Anat. Rec. 113: 143–161; 1952.

    Article  PubMed  CAS  Google Scholar 

  • Cibelli, J.B.; Stice, S.L.; Golueke, P.J. Cloned transgenic calves produced from non-quiescent fetal fibroblasts. Science 280: 1256–1258; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Dai, Y.; Vaught, T.D.; Boone, J., et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20: 251–255; 2002.

    Article  PubMed  CAS  Google Scholar 

  • De Sousa, P.A.; King, T.; Harkness, L., et al. Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol. Reprod. 65: 23–30; 2001.

    Article  PubMed  Google Scholar 

  • Dean, W.; Santos, F.; Stojkovic, M., et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci., U S A 98: 13734–13738; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Eggan, K.; Akutsu, H.; Loring, J., et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci., U S A 98: 6209–6214; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Emond, V.; MacLaren, L.A.; Kimmins, S., et al. Expression of cyclooxygenase-2 and granulocyte-macrophage colony-stimulating factor in the endometrial epithelium of the cow is up-regulated during early pregnancy and in response to intrauterine infusions of interferon-tau. Biol. Reprod. 70: 54–64; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Enright, B.P.; Sung, L.Y.; Chang, C.C., et al. Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2′-deoxycytidine. Biol. Reprod. 72: 944–948; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Gao, S.; McGarry, M.; Ferrier, T., et al. Effect of cell confluence on production of cloned mice using an inbred embryonic stem cell line. Biol. Reprod. 68: 595–603; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Hashizume, K.; Ishiwata, H.; Kizaki, K., et al. Implantation and placental development in somatic cell clone recipient cows. Cloning Stem Cells 4: 197–209; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hashizume, K.; Shimada, A.; Nakano, H.; Takahashi, T. Bovine trophoblast cell culture systems: a technique to culture bovine trophoblast cells without feeder cells. Methods Mol. Med. 121: 179–188; 2006.

    PubMed  CAS  Google Scholar 

  • Hayashida, T.; Eversole-Cire, P.; Jones, P.A.; Sasaki, H. Imprinted genes are up-regulated by growth arrest in embryonic fibroblasts. J. Biochem. (Tokyo) 122: 901–903; 1997.

    CAS  Google Scholar 

  • Hill, J.R.; Burghardt, R.C.; Jones, K., et al. Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63: 1787–1794; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, M.; Sato, T.; Tsumagari, M., et al. Differential regulation of the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases by cytokines and growth factors in bovine endometrial stromal cells and trophoblast cell line BT-1 in vitro. Biol. Reprod. 68: 1276–1281; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Humpherys, D.; Eggan, K.; Akutsu, H., et al. Epigenetic instability in ES cells and cloned mice. Science 293: 95–97; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Humpherys, D.; Eggan, K.; Akutsu, H., et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl. Acad. Sci., U S A 99: 12889–12894; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, K.; Kohda, T.; Lee, J., et al. Faithful expression of imprinted genes in cloned mice. Science 295: 297; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kang, Y.K.; Park, J.S.; Koo, D.B., et al. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J. 21: 1092–1100; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kharroubi, A.B.; Piras, G.; Stewart, C.L. DNA demethylation reactivates a subset of imprinted genes in uniparental mouse embryonic fibroblasts. J. Biol. Chem. 276: 8674–8680; 2001.

    Article  PubMed  Google Scholar 

  • Klein, C.; Bauersachs, S.; Ulbrich, S.E., et al. Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period. Biol. Reprod. 74: 253–264; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kremenskoy, M.; Kremenska, Y.; Suzuki, M., et al. DNA methylation profiles of donor nuclei cells and tissues of cloned bovine fetuses. J. Reprod. Dev. 52: 259–266; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.S.; Peterson, A.J.; Donnison, M.J., et al. Cloned cattle fetuses with the same nuclear genetics are more variable than contemporary half-siblings resulting from artificial insemination and exhibit fetal and placental growth deregulation even in the first trimester. Biol. Reprod. 70: 1–11; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, H.; Shimada, A.; Imai, K., et al. Bovine trophoblastic cell differentiation on collagen substrata: formation of binucleate cells expressing placental lactogen. Cell Tissue Res. 307: 225–235; 2002.

    Article  PubMed  Google Scholar 

  • Niemann, H.; Wrenzycki, C.; Lucas-Hahn, A., et al. Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development. Cloning Stem Cells 4: 29–38; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Oishi, M.; Gohma, H.; Hashizume, K., et al. Early embryonic death-associated changes in genome-wide gene expression profiles in the fetal placenta of the cow carrying somatic nuclear-derived cloned embryo. Mol. Reprod. Dev. 73: 404–409; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, K.; Watanabe, H.; Yoshihara, K., et al. Gene expression of leukemia inhibitory factor (LIF) and macrophage colony stimulating factor (M-CSF) in bovine endometrium during early pregnancy. Theriogenology 60: 1217–1226; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Patel, O.V.; Yamada, O.; Kizaki, K., et al. Expression of trophoblast cell-specific pregnancy-related genes in somatic cell-cloned bovine pregnancies. Biol. Reprod. 70: 1114–1120; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Powell, A.M.; Talbot, N.C.; Wells, K.D., et al. Cell donor influences success of producing cattle by somatic cell nuclear transfer. Biol. Reprod. 71: 210–216; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Ravelich, S.R.; Shelling, A.N.; Ramachandran, A., et al. Altered placental lactogen and leptin expression in placentomes from bovine nuclear transfer pregnancies. Biol Reprod. 71: 1862–1869; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R.M.; Imakawa, K.; Niwano, Y., et al. Interferon production by the preimplantation sheep embryo. J. Interferon Res. 9: 175–187; 1989.

    PubMed  CAS  Google Scholar 

  • Rosenkrans, C.F., Jr.; First, N.L. Culture of bovine zygotes to the blastocyst stage: Effects of amino acids and vitamins. Theriogenology 35: 266; 1991.

    Article  Google Scholar 

  • Rexroad, C.E., Jr.; Powell, A.M. The ovine uterus as a host for in vitro-produced bovine embryos. Theriogenology 52: 351–364; 1999.

    Article  PubMed  Google Scholar 

  • Santos, F.; Zakhartchenko, V.; Stojkovic, M., et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol. 13: 1116–1121; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, A.; Nakano, H.; Takahashi, T., et al. Isolation and characterization of a bovine blastocyst-derived trophoblastic cell line, BT-1: development of a culture system in the absence of feeder cell. Placenta 22: 652–662; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Shu-Hung, C.; Vaught, T.D.; Monahan, J.A.; Boone, J.; Emslie, E.; Jobst, P.M.; Lamborn, A.E.; Schnieke, A.; Robertson, L.; Colman, A.; Dai, Y.; Polejaeve, I.A.; Ayares, D.L. Efficient production of transgenic cloned calves using preimplantation screening. Biol Reprod. 67: 1488–1492; 2002.

    Article  CAS  Google Scholar 

  • Singh, U.; Fohn, L.E.; Wakayama, T., et al. Different molecular mechanisms underlie placental overgrowth phenotypes caused by interspecies hybridization, cloning, and Esx1 mutation. Dev. Dyn. 230: 149–164; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S.L.; Everts, R.E.; Tian, X.C., et al. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning. Proc. Natl. Acad. Sci., U S A 102: 17582–17587; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Stice, S.L.; Strelchenko, N.S.; Keefer, C.L.; Matthews, L. Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol. Reprod. 54: 100–110; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Suemizu, H.; Aiba, K.; Yoshikawa, T., et al. Expression profiling of placentomegaly associated with nuclear transplantation of mouse ES cells. Dev. Biol. 253: 36–53; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Surani, M.A. Reprogramming of genome functions through epigenetic inheritance. Nature 414: 122–128; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Surani, M.A.H.; Barton, S.C.; Norris, M.L. Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 45: 127–136; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, S.; Oda, M.; Toyoshima, Y., et al. Placentomegaly in cloned mouse concepti caused by expansion of the spongiotrophoblast layer. Biol. Reprod. 65: 1813–1821; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, N.C.; Caperna, T.J.; Edwards, J.L., et al. Bovine blastocyst-derived trophectoderm and endoderm cell cultures: Interferon-tau and transferrin expression as respective in vitro markers. Biol. Reprod. 62: 235–247; 2000a.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, N.C.; Caperna, T.J.; Powell, A.M., et al. Isolation and characterization of a bovine trophectoderm cell line derived from a parthenogenetic blastocyst. Mol. Reprod. Dev. 69: 164–173; 2004a.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, N.C.; Caperna, T.J.; Powell, A.M., et al. Isolation and characterization of a bovine visceral endoderm cell line derived from a parthenogenetic blastocyst. In Vitro Cell. Dev. Biol. Anim. 41: 130–141; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, N.C.; Paape, M.; Sohn, E.J.; Garrett, W.M. Macrophage population dynamics within fetal mouse fibroblast cultures derived from C57BL/6, CD-1, CF-1 mice and interleukin-6 and granulocyte colony stimulating factor knockout mice. In Vitro Cell. Dev. Biol. 40: 196–210; 2004c.

    Article  Google Scholar 

  • Talbot, N.C.; Powell, A.M.; Caperna, T.J. Comparison of colony-formation efficiency of bovine fetal fibroblast cell lines cultured with low oxygen, hydrocortisone, l-carnosine, bFGF, or different levels of FBS. Cloning Stem Cells 6: 35–45; 2004b.

    Article  CAS  Google Scholar 

  • Talbot, N.C.; Powell, A.M.; Garrett, W., et al. Ultrastructural and karyotypic examination of in vitro produced bovine embryos developed in the sheep uterus. Tissue Cell 32: 9–27; 2000b.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, N.C.; Powell, A.M.; Rexroad, C.E., Jr. In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol. Reprod. Dev. 42: 35–52; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Ungaro, P.; Casola, S.; Vernucci, M., et al. Relaxation of insulin-like growth factor-2 imprinting in rat cultured cells. Mol. Cell Endocrinol. 135: 153–163; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ushizawa, K.; Takahashi, T.; Kaneyama, K., et al. Gene expression profiles of bovine trophoblastic cell line (BT-1) analyzed by a custom cDNA microarray. J. Reprod. Dev. 51: 211–220; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wakayama, T.; Perry, A.C.F.; Zuccotti, M., et al. Full-development of mice from enucleated oocytes injected with cumulus cell nuclei. Science 394: 369–374; 1998.

    CAS  Google Scholar 

  • Wall, R.J.; Powell, A.M.; Paape, M.J., et al. Genetically enhanced cow resist intramammary Staphylococcus aureus infection. Nat. Biotechnol. 23: 445–451; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Wells, D.N.; Misica, P.M.; Day, A.M.; Tervit, H.R. Production of cloned lambs from an established embryonic cell line: a comparison between in vivo- and in vitro-matured cytoplasts. Biol. Reprod. 57: 385–393; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wilmut, I.; Schnieke, A.E.; McWhir, J., et al. Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813; 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. David Guthrie, Dr. Wesley Garrett, Dr. Le Ann Blomberg, Dr. Harris A. Lewin, Dr. Isabelle Hue, and Dr. John M. Talbot for their helpful editorial and scientific comments on the manuscript. We thank Mr. Paul Graninger for technical assistance in embryo production and tissue culture. We also thank Ms. Olga M. Ocon for technical assistance in the assay of IFN-τ. Any mention of trade name, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the US Department of Agriculture or imply its approval to the exclusion of other products or vendors that also may be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil C. Talbot.

Additional information

J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talbot, N.C., Powell, A.M., Camp, M. et al. Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer, or parthenogenetic activation. In Vitro Cell.Dev.Biol.-Animal 43, 59–71 (2007). https://doi.org/10.1007/s11626-007-9013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-007-9013-9

Keywords

Navigation