Skip to main content
Log in

Epithelial–mesenchymal transition of rat peritoneal mesothelial cells via Rhoa/Rock pathway

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the role of the RhoA/Rock signaling pathway in the epithelial–mesenchymal transition (EMT) of rat peritoneal mesothelial cells (RPMCs). Primary SD rat peritoneal mesothelial cells were cultured in vitro. RPMCs were randomly assigned to four groups: group A (control), group B (TGF-β1, 10 μg/L), group C (10 μg/L TGF-β1 + 10 μmol/L Y-27632, an inhibitor of Rock that was pre-applied for 2 h before TGF-β1 stimulation), and group D (Y-27632 alone, 10 μmol/L). Our results were as follows: (1) TGF-β1 stimulation elicited a robust increase in RhoA activity in a time-dependent manner; the increase was 2.57 ± 0.52 times larger than the activity observed for the control group (P < 0.05) after 10 min of stimulation. RhoA activity peaked at 1 h and was 4.35 ± 0.41 times the value observed for the control group (P < 0.05). (2) TGF-β1 up-regulated mRNA and/or protein expression of α-SMA, vimentin, and collagen and down-regulated mRNA and protein expression of E-cadherin in RPMCs. (3) The Rock inhibitor Y-27632 effectively reduced TGF-β1-induced expression of α-SMA, collagen, and vimentin; the mRNA levels of α-SMA and collagen decreased by 53.8% and 55.7%, respectively, and the protein levels of α-SMA, vimentin, and collagen decreased by 42.6%, 60.1%, and 58.1%, respectively, as compared to TGF-β1-stimulated groups (P < 0.05). However, the Rock inhibitor Y-27632 had no effect on the level of E-cadherin. In conclusion, the RhoA/Rock signaling pathway may mediate EMT induced by TGF-β1 in rat peritoneal mesothelial cells. The RhoA/Rock pathway may be a potential therapeutic target for the treatment of peritoneal fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Betjes M. G.; Bos H. J.; Krediet R. T.; Arisz L. The mesothelial cells in CAPD effluent and their relation to peritonitis incidence. Perit. Dial. Int. 11: 22–26; 1991.

    CAS  PubMed  Google Scholar 

  • Bishop A. L.; Hall A. Rho GTPases and their effector proteins. Biochem. J. 348(Pt 2): 241–255; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Burridge K.; Wennerberg K. Rho and Rac take center stage. Cell 116: 167–179; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Dou X. R.; Yu W. Q.; Hao W. K.; Nie J.; Li X. Y.; Chen W. F.; Wang X.; Jia Z. J. Smad7 overexpression inhibits epithelial–mesenchymal transition in peritoneal fibrosis rat model. Chin. J. Nephrol. 22: 612–616; 2006.

    CAS  Google Scholar 

  • Essig M.; Vrtovsnik F.; Friedlander G. Inhibitors of HMG CoA reductase: new modes of action, new indications? Therapie 55: 43–49; 2000.

    CAS  PubMed  Google Scholar 

  • Gotloib L.; Wajsbrot V.; Cuperman Y.; Shostak A. Acute oxidative stress induces peritoneal hyperpermeability, mesothelial loss, and fibrosis. J. Lab. Clin. Med. 143: 31–40; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z.; Seo J. Y.; Ha H.; Lee E. A.; Kim Y. S.; Han D. C.; Uh S. T.; Park C. S.; Lee H. B. Reactive oxygen species mediate TGF-beta1-induced plasminogen activator inhibitor-1 upregulation in mesangial cells. Biochem. Biophys. Res. Commun. 309: 961–966; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Leavesley D. I.; Stanley J. M.; Faull R. J. Epidermal growth factor modifies the expression and function of extracellular matrix adhesion receptors expressed by peritoneal mesothelial cells from patients on CAPD. Nephrol. Dial. Transplant. 14: 1208–1216; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Linden T.; Musi B.; Jarkelid L.; Forsback G.; Kjellstrand P.; Deppisch R.; Wieslander A. Glucose degradation products in peritoneal dialysis fluids may have both local and systemic effects: a study of residual fluid and mesothelial cells. Perit. Dial. Int. 21: 607–610; 2001.

    CAS  PubMed  Google Scholar 

  • Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol. 15: 1–12; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Murata T.; Arii S.; Mori A.; Imamura M. Therapeutic significance of Y-27632, a Rho-kinase inhibitor, on the established liver fibrosis. J. Surg. Res. 114: 64–71; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Murata T.; Arii S.; Nakamura T.; Mori A.; Kaido T.; Furuyama H.; Furumoto K.; Nakao T.; Isobe N.; Imamura M. Inhibitory effect of Y-27632, a ROCK inhibitor, on progression of rat liver fibrosis in association with inactivation of hepatic stellate cells. J. Hepatol. 35: 474–481; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Nagatoya K.; Moriyama T.; Kawada N.; Takeji M.; Oseto S.; Murozono T.; Ando A.; Imai E.; Hori M. Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int. 61: 1684–1695; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Patel S.; Takagi K. I.; Suzuki J.; Imaizumi A.; Kimura T.; Mason R. M.; Kamimura T.; Zhang Z. RhoGTPase activation is a key step in renal epithelial mesenchymal transdifferentiation. J. Am. Soc. Nephrol. 16: 1977–1984; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Rhyu D. Y.; Yang Y.; Ha H.; Lee G. T.; Song J. S.; Uh S. T.; Lee H. B. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. J. Am. Soc. Nephrol. 16: 667–675; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Sahai E.; Marshall C. J. RHO-GTPases and cancer. Nat. Rev. Cancer 2: 133–142; 2002.

    Article  PubMed  Google Scholar 

  • Shimizu Y.; Dobashi K.; Iizuka K.; Horie T.; Suzuki K.; Tukagoshi H.; Nakazawa T.; Nakazato Y.; Mori M. Contribution of small GTPase Rho and its target protein rock in a murine model of lung fibrosis. Am. J. Respir. Crit. Care Med. 163: 210–217; 2001.

    CAS  PubMed  Google Scholar 

  • Symons M.; Settleman J. Rho family GTPases: more than simple switches. Trends Cell Biol. 10: 415–419; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Uehata M.; Ishizaki T.; Satoh H.; Ono T.; Kawahara T.; Morishita T.; Tamakawa H.; Yamagami K.; Inui J.; Maekawa M.; Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389: 990–994; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Wettschureck N.; Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J. Mol. Med. 80: 629–638; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Witowski J.; Wisniewska J.; Korybalska K.; Bender T. O.; Breborowicz A.; Gahl G. M.; Frei U.; Passlick-Deetjen J.; Jorres A. Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J. Am. Soc. Nephrol. 12: 2434–2441; 2001.

    CAS  PubMed  Google Scholar 

Download references

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Additional information

Editor: J. Denry Sato

Hao Zhang and Xiaoxian Liu are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Liu, X., Liu, Y. et al. Epithelial–mesenchymal transition of rat peritoneal mesothelial cells via Rhoa/Rock pathway. In Vitro Cell.Dev.Biol.-Animal 47, 165–172 (2011). https://doi.org/10.1007/s11626-010-9369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9369-0

Keywords

Navigation