Skip to main content
Log in

Mechanisms of liquid flux across pulmonary alveolar epithelial cell monolayers

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Active transport of sodium by pulmonary alveolar epithelial cells (AEC) is believed to be an important component of edema clearance in the normal and injured lung. Data supporting this premise have come from measurements of sodium movement across AEC monolayers or from perfused lung model systems. However, direct measurement of fluid flux across AEC monolayers has not been reported. In the present work, AEC were studied with an experimental system for the measurement of fluid flux (Jv) across functionally intact cell monolayers. Primary adult rat type II alveolar epithelial cells were cultured on 0.8 µm nuleopore filters previously coated with gelatin and fibronectin. Intact monolayers were verified by high electrical resistance (> 1000 Θ) at 4–5 d of primary culture. At the same time interval, transmission electron microscopy revealed cells with type I cell-like morphology throughout the monolayer. These were characterized by both adherens and tight junctional attachments. Fluid flux across the monolayers was measured volumetrically over a period of 2 h in the presence of HEPES-buffered DMEM containing 3% fatty acid-free bovine serum albumin. Flux (Jv) was inhibited 39% by 1 × 10−4 M ouabain (P < 0.01) and 27% by 5 × 10−4 M amiloride (P < 0.05). These data support the concept that AEC Na+/K+-ATPase and Na+ transport systems are important determinants of AEC transepithelial fluid movement in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachofen, H.; Schurch, S.; Michel, R. P., et al. Experimental hydrostatic pulmonary edema in rabbit lungs. I. Morphology. Am. Rev. Respir. Dis. 147:989–996; 1993.

    PubMed  CAS  Google Scholar 

  2. Bachofen, H.; Schurch, S.; Weibel, E. R. Experimental hydrostatic pulmonary edema in rabbit lungs. II. Barrier lesions. Am. Rev. Respir. Dis. 147:997–1004; 1993.

    PubMed  CAS  Google Scholar 

  3. Bassett, G.; Crone, C.; Saumon, G. Significance of active ion transport in transalveolar water absorption: a study on isolated rat lung. J. Physiol. (Lond.) 384:311–324; 1987.

    Google Scholar 

  4. Berthiaume, Y.; Broaddus, V. C.; Gropper, M. A., et al. Alveolar liquid and protein clearance from normal dog lungs. J. Appl. Physiol. 65:585–593; 1988.

    PubMed  CAS  Google Scholar 

  5. Canessa, C.; Schlid, L.; Buell, G., et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467; 1994.

    Article  PubMed  CAS  Google Scholar 

  6. Cheek, J. M.; Evans, M. J.; Crandall, E. D. Type I cell-like morphology in tight alveolar epithelial monolayers. Exp. Cell Res. 184:375–387; 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Cheek, J. M.; Kim, K. J.; Crandall, E. D. Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. Am. J. Physiol. 256:C688-C693; 1989.

    PubMed  CAS  Google Scholar 

  8. Cott, G.; Sughahara, K.; Mason, R. Stimulation of net active transport across type II cell monolayers. Am. J. Physiol. 254 (Cell Physiol. 23):C535-C547; 1988.

    Google Scholar 

  9. Crapo, J. D. New concepts in the formation of pulmonary edema. Am. Rev. Respir. Dis. 147:790–791; 1993.

    PubMed  CAS  Google Scholar 

  10. Goodman, B. E.; Anderson, J. L.; Clemens, J. W., et al. Differences in sodium and D-glucose transport between hamster and rat lungs. J. Appl. Physiol. 76:2578–2585; 1994.

    PubMed  CAS  Google Scholar 

  11. Goodman, B.; Crandall, E. Permeability of cultured monolayers of type II alveolar epithelial cells to inulin (Abstract). Fed. Proc. 43:829; 1984.

    Google Scholar 

  12. Handler, J. S. Use of cultured epithelia to study transport and its regulation. J. Exp. Biol. 106:55–59; 1983.

    PubMed  CAS  Google Scholar 

  13. Haskell, J. F.; Yue, G.; Benos, D., et al. Upregulation of sodium conductive pathways in alveolar type II cells in sublethal hyperoxia. Am. J. Physiol. 266:L30-L37; 1994.

    PubMed  CAS  Google Scholar 

  14. Humphrey, H.; Hall, J.; Sznajder, J. I., et al. Improved survival following capillary wedge pressure reduction in patients with ARDS. Chest 97:1176–1180; 1990.

    PubMed  CAS  Google Scholar 

  15. Kim, K.; Cheek, J.; Crandall, E. D. Contribution of active Na+ and Cl-fluxes to net ion transport by alveolar epithelium. Respir. Physiol. 85:245–256; 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Kim, K. J.; Suh, D. J.; Lubman, R. L., et al. Studies on the mechanisms of active ion fluxes across alveolar epithelial cell monolayers. J. Tiss. Cult. Meth. 14:187–194; 1992.

    Article  Google Scholar 

  17. Matthay, M. A.; Wiener-Kronish, J. P. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am. Rev. Respir. Dis. 142:1250–1257; 1990.

    PubMed  CAS  Google Scholar 

  18. McCandless, B. K.; Powers, M. R.; Cooper, J. A., et al. Effects of albumin on hydraulic conductivity of pulmonary artery endothelial monolayers. Am. J. Physiol. 260:L571-L576; 1991.

    PubMed  CAS  Google Scholar 

  19. Nord, E. P.; Brown, S. E.; Crandall, E. D. Characterization of Na+-H+ antiport in type II alveolar epithelial cells. Am. J. Physiol. 252:C490-C498; 1987.

    PubMed  CAS  Google Scholar 

  20. O’Brodovich, H.; Staub, O.; Rossier, B. C., et al. Ontogeny of a-1 and b-1 isoforms of Na,K-ATPase in fetal distal rat lung epithelium. Am. J. Physiol. 264:C1137–1143; 1993.

    PubMed  CAS  Google Scholar 

  21. O’Brodovich, H.; Ueda, J.; Canessa, C., et al. Expression of the Na+ channel in the developing rat lung. Am. J. Physiol. 265:C491–496; 1993.

    PubMed  CAS  Google Scholar 

  22. Olivera, W. G.; Ridge, K. M.; Sznajder, J. I. Lung liquid clearance and alveolar epithelial Na,K-ATPase during acute hyperoxia and recovery in rats. Am. J. Respir. Crit. Care Med.; 152:1229–1234; 1995.

    PubMed  CAS  Google Scholar 

  23. Olivera, W.; Ridge, K.; Wood, L. D. H., et al. ANF decreases active sodium transport and increases alveolar epithelial permeability in rats. J. Appl. Physiol. 75:1581–1586; 1993.

    PubMed  CAS  Google Scholar 

  24. Olivera, W.; Ridge, K.; Wood, L. D. H., et al. Active sodium transport and alveolar epithelial Na-K-ATPase increase during subacute hyperoxia in rats. Am. J. Physiol. 266:L577-L584; 1994.

    PubMed  CAS  Google Scholar 

  25. Orlowski, J.; Lingrel, J. B. Tissue specific and developmental regulation of rat Na,K-ATPase catalytic a and b subunit mRNAs. J. Biol. Chem. 263:10436–10442; 1988.

    PubMed  CAS  Google Scholar 

  26. Powers, M. R.; Blumenstock, F. A.; Cooper, J. A., et al. Role of albumin arginyl sites in albumin induced reduction of endothelial hydraulic conductivity. J. Cell. Physiol. 141:558–564; 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Qiao, R.; Siflinger-Birnboim, A.; Lum, H., et al. Albumin and ricinus communis agglutinin decrease endothelial permeability via interaction with matrix. Am. J. Physiol. 265:C439-C446; 1991.

    Google Scholar 

  28. Ridge, K. M.; Factor, P.; Horowitz, S., et al. Differential Na,K-ATPase isoforms in cultured rat alveolar type II cells. Am. J. Respir. Crit. Care Med. 149:A588; 1994 (Abstract).

  29. Ridge, K.; Russo, L.; Factor, P., et al. Na,K-ATPase mRNA is upregulated during alveolar epithelium proliferation following lung injury but not during compensatory lung growth. (Abstract). FASEB J. 6:A1468; 1992.

  30. Rutschman, D. H.; Olivera, W.; Sznajder, J. I. Active transport and passive liquid movement in isolated perfused rat lungs. J. Appl. Physiol. 75:1574–1580; 1993.

    PubMed  CAS  Google Scholar 

  31. Saumon, G.; Basset, G. Electrolyte and fluid transport across mature alveolar epithelium. J. Appl. Physiol. 74:1–15; 1993.

    Article  PubMed  CAS  Google Scholar 

  32. Saumon, G.; Martet, G. Effects of metabolic inhibitors on Na+ transport in isolated perfused rat lungs. Am. J. Respir. Cell Mol. Biol. 9:157–165; 1993.

    PubMed  CAS  Google Scholar 

  33. Schneeberger, E. E.; McCarthy, K. Cytochemical localization of Na+-K+ ATPase in rat type II pneumonocytes. J. Appl. Physiol. 60:1584–1589; 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Serikov, V. B.; Grady, M.; Matthay, M. A. Effect of temperature on alveolar liquid and protein clearance in an in situ perfused goat lung. J. Appl. Physiol. 75:940–947; 1993.

    PubMed  CAS  Google Scholar 

  35. Shyjan, A. W.; Levenson, R. Antisera specific for a-1, a-2, a-3 and b subunits of the Na,K-ATPase: differential expression of a and b in rat tissue membranes. Biochemistry 28:4531–4535; 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Sznajder, J. I.; Olivera, W. G.; Ridge, K. M., et al. Mechanisms of lung liquid clearance during hyperoxia in isolated rat lungs. Am. Rev. Respir. Dis.; in press.

  37. Sznajder, J. I.; Wood, L. D. H. Beneficial effects of reducing pulmonary edema in patients with hypoxemic respiratory failure. Chest 100:890–892; 1991.

    PubMed  CAS  Google Scholar 

  38. Sznajder, J. I.; Zucker, A.; Wood, L. D. H., et al. The effects of plasmapheresis and hemofiltration on canine acid aspiration pulmonary edema. Am. Rev. Respir. Dis. 34:222–228; 1986.

    Google Scholar 

  39. Taylor, A. E. Capillary fluid filtration: starling forces and lymph flow. Circ. Res. 49:557–576; 1981.

    PubMed  CAS  Google Scholar 

  40. Uhal, B. D.; Flowers, K. M.; Rannels, D. E. Type II pneumonocyte proliferation in vitro: problems and future directions. Am. J. Physiol. Supp. 261:110–117; 1991.

    CAS  Google Scholar 

  41. Uhal, B. D.; Rannels, D. E. DNA distribution analysis of type II pneumonocytes by laser flow cytometry technical considerations. Am. J. Physiol. 261:L296-L306; 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippatos, G.S., Hughes, W.F., Qiao, R. et al. Mechanisms of liquid flux across pulmonary alveolar epithelial cell monolayers. In Vitro Cell.Dev.Biol.-Animal 33, 195–200 (1997). https://doi.org/10.1007/s11626-997-0141-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0141-z

Key words

Navigation