Skip to main content

Advertisement

Log in

New achievements in ginseng research and its future prospects

  • Herbal Medicine Progress
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

In recent decades, scientists in Asian and Western countries have been paying great attention to ginseng research. Today, more than 200 ginsenosides and non-saponin constituents have been isolated and identified. Ginsenosides show biological activities only after being deglycosylated by intestinal bacteria. Aglycone protopanaxadiol and protopanaxatriol show the highest bioactivities. According to literature, the noticeable action of ginseng is that of delaying aging and especially increasing the nootropic effect, and it was found for the first time that Rg1 could increase hippocampal neurogenesis in vitro and in vivo under physiological and pathological circumstances. This is one of primary mechanisms underlying many of its pharmacological actions on the central nervous system. Rg1 was further shown to improve learning and memory in normal rats and mice. The nootropic signaling pathway has also been carried out in normal rats, and the Rg1-induced signaling pathway is similar to the memory formation that occurs in mammals, suggesting that Rg1 may have a potential effect in increasing intellectual capacity in normal people. Comparisons of chemical structures and pharmacologic functions between Panax ginseng and Panax quiquefolium were carried out by many scientists. The conclusion is that each has its own characteristics. There is no superiority or inferiority to the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang JT. The chemistry, metabolism and biological activities of ginseng. Beijing: Chemical Industry Press; 2006:3–17, 59–86, 87–95, 358–366.

    Google Scholar 

  2. Shibata S. Future development of ginseng studies. In: Shibata S, Yasuo D, Hiroschi S, eds. Recent advances in ginseng studies. Tokyo: Hirokawa Publishing Company; 1989:145–148.

    Google Scholar 

  3. Zhang JT. Review and prospect of ginseng study. Acta Pharm Sin (Chin) 1995;30:321–325.

    CAS  Google Scholar 

  4. Zhang JT. Noontropic mechanism of ginsenoside Rg1—influence on neuronal plasticity and neurogenesis. Acta Pharm Sin (Chin) 2005;40:385–388.

    CAS  Google Scholar 

  5. Yang Y, Zhang JT, Shi CZ, Qu ZW, Liu P. Study on the noontropic mechanism of ginsenoside Rb1 and Rg1—influence on mouse brain development. Acta Pharm Sin (Chin) 1994;29:241–245.

    Google Scholar 

  6. Kobashi K. Relation of intestinal bacteria to pharmacological effects of ginsenosides. Bioscience Microflora 1997;16:1–7.

    CAS  Google Scholar 

  7. Ota T, Maeda M, Odashime S. Mechanism of action of ginsenoside Rh2: uptake and metabolism of ginsenoside Rh2 by cultured B16 melanoma cells. J Pharm Sci 1991;80:1141–1146.

    Article  PubMed  CAS  Google Scholar 

  8. Yu Y, Zhou Q, Hang Y, Bu X, Jia W. Antiestrogenic effect of 20S-protopanaxadiol and its synergy with tamoxifen on breast cancer cells. Cancer 2007;109:2374–2382.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang JT, Qu ZW, Liu Y, Deng HL. Preliminary study on the antiamnestic mechanism of ginsenoside Rg1 and Rb1. Chin Med J 1990;103:932–938.

    PubMed  CAS  Google Scholar 

  10. Liu M, Zhang JT. Effects of ginsenoside Rg1 on c-fos gene expression and cAMP level in rat hippocampus. Acta Pharmacol Sin 1996;17:171–174.

    CAS  Google Scholar 

  11. Zhang JT. Preliminary study on antiammestic mechanism of ginsenoside Rg1 and Rb1. In: Shibata S, Yasuo O, Hiroshi S, eds. Recent advances in ginseng studies. Tokyo: Hirokawa Press; 1981:51–52.

    Google Scholar 

  12. Zhang JT. Anti-apoptotic and anti-stress effects of ginsenoside Rg1 and Rb1. In: 99′ international symposium on aging and anti-aging science and technology (plenary lecture) 1998:12–20.

  13. Zhang JT, Liu M. Modern research on the noontropic and anti-aging effects of ginseng. In: Zhou JH, ed. Advance in pharmacological and clinical research. Beijing: Military Medical Science Press; 1996:170–179.

    Google Scholar 

  14. Wang XY, Zhang JT. NO mediates ginsenoside Rg1-induced long-term potentation in anesthetized rats. Acta Pharmacol Sin 2001;22:1099–1102.

    PubMed  CAS  Google Scholar 

  15. Zhang JT. New progress in the study of ginsenoside Rg1 and Rb1. In: The 14th symposium on natural products research. Taibei: 1999:1–4.

  16. Liu M, Zhang JT. Immunoregulatory effects of ginsenoside Rg1 in aged rats. Acta Pharm Sin (Chin) 1995;30:818–823.

    CAS  Google Scholar 

  17. Liu M, Zhang JT. Studies on the mechanisms of immunoregulatory effects of ginsenoside Rg1 in aged rats. Acta Pharm Sin (Chin) 1996;31:95–100.

    CAS  Google Scholar 

  18. Zhang JT, Liu Y, Qu ZW. Effects of ginsenoside Rg1 and Rb1 on neurotransmitter receptors and protein synthesis in brain. Acta Pharm Sin (Chin) 1988;23:475–477.

    Google Scholar 

  19. Yang Y, Zhang JT, Shi CZ, Qu ZW, Liu Y. Study on the noontropic mechanism of ginsenoside Rg1 and Rb1 influence on mouse brain development. Acta Pharm Sin (Chin) 1994;29:241–245.

    Google Scholar 

  20. Wang XY, Zhang JT. Effect of ginsenoside Rg1 on synaptic plasticity of freely moving rats and its mechanism of action. Acta Pharmacol Sin 2001;22:657–662.

    PubMed  CAS  Google Scholar 

  21. Wang YZ, Wang YS, Chu SF. Noontropic signal transduction of ginsenoside Rg1. Chin Pharmacol Bull 2008;24:740–743.

    CAS  Google Scholar 

  22. Hu JF, Xue W, Ning N, Yuan YH, Zhagn JT, Chen NH. Ginsenoside Rg1 activated CaMKII alpha mediated extracellular signal-regulated kinase/mitogen activated protein kinase signaling pathway. Acta Pharmacol Sin 2008;29:1119–1126.

    Article  PubMed  CAS  Google Scholar 

  23. Shen LH, Zhang JT. Culture of neural stem cells from cerebral cortex of rat embryo and effects of drugs on the proliferation ability of stem cells. Acta Pharm Sin (Chin) 2003;38:735–738.

    CAS  Google Scholar 

  24. Altman J. Autoradiographic and histological studies of postnatal neurogenesis, IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969;137:433–457.

    Article  PubMed  CAS  Google Scholar 

  25. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965;124:319–335.

    Article  PubMed  CAS  Google Scholar 

  26. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313–1317.

    Article  PubMed  CAS  Google Scholar 

  27. Palmer TD, Ray J, Gage FH. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 1995;6:474–486.

    Article  PubMed  CAS  Google Scholar 

  28. Palmer TD, Mardakis EA, Willhoite AR, Safar F, Gage FH. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 1999;19:8487–8497.

    PubMed  CAS  Google Scholar 

  29. Yamamoto S, Nagao M, Sugimori M, Kosako H, Nakatomi H, Yamamoto N, et al. Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord. J Neurosci 2001;21:9814–9823.

    PubMed  CAS  Google Scholar 

  30. Yamada M, Onodera M, Mizuno Y, Mochizuki H. Neurogenesis in olfactory bulb identified by retroviral labeling in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated adult mice. Neuroscience 2004;124:173–181.

    Article  PubMed  CAS  Google Scholar 

  31. Belluzzi O, Benedusi M, Ackman J, LoTurco JJ. Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci 2003;23:10411–10418.

    PubMed  CAS  Google Scholar 

  32. Carlén M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisén J. Functional integration of adult-born neurons. Curr Biol 2002;12:606–608.

    Article  PubMed  Google Scholar 

  33. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002;415:1030–1034.

    Article  PubMed  CAS  Google Scholar 

  34. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001;435:406–417.

    Article  PubMed  CAS  Google Scholar 

  35. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996;16:2027–2033.

    PubMed  CAS  Google Scholar 

  36. Tropepe V, Craig CG, Morshead CM, van der Kooy D. Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci 1997;17:7850–7859.

    PubMed  CAS  Google Scholar 

  37. Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 2004;24:8354–8365.

    Article  PubMed  CAS  Google Scholar 

  38. Tanapat P, Hasings NB, Eeeves AJ, Gould E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci 1999;19:5792–5801.

    PubMed  CAS  Google Scholar 

  39. Ormerod BK, Lee TT, Galea LA. Estradiol enhances neurogenesis in the dentate gyri of adult male meadow voles by increasing the survival of young granule neurons. Neuroscience 2004;128:645–654.

    Article  PubMed  CAS  Google Scholar 

  40. Furuta M, Bridges RS. Gestation-induced cell proliferation in the rat brain. Brain Res Dev Brain Res 2005;156:61–66.

    Article  PubMed  CAS  Google Scholar 

  41. Bridges RS, Grattan DR. Prolactin-induced neurogenesis in the maternal brain. Trends Endocrinol Metab 2003;14:199–201.

    Article  PubMed  CAS  Google Scholar 

  42. Shen L, Zhang J. Ginsenoside Rg1 increases ischemia-induced cell proliferation and survival in the dentate gyrus of adult gerbils. Neurosci Lett 2003;344:1–4.

    Article  PubMed  CAS  Google Scholar 

  43. Shen LH, Zhang JT. Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells. Neurol Res 2004;26:422–428.

    Article  PubMed  CAS  Google Scholar 

  44. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 1999;2:260–265.

    Article  PubMed  CAS  Google Scholar 

  45. Lemaire V, Aurousseau C, LeMoal M, Abrous DN. Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis. Eur J Neurosci 1999;11:4006–4014.

    Article  PubMed  CAS  Google Scholar 

  46. Lu L, Bao G, Chen H, Xia P, Fan X, Zhang J, et al. Modification of hippocampal neurogenesis and neuroplasticity by social environments. Exp Neurol 2003;183:600–609.

    Article  PubMed  Google Scholar 

  47. Tanapat P, Hastings NB, Rydel TA, Galea LA, Gould E. Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormonedependent mechanism. J Comp Neurol 2001;437:496–504.

    Article  PubMed  CAS  Google Scholar 

  48. Coe CL, Kramer M, Czeh B Gould E, Reeves AJ, Kirschbaum C, et al. Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry 2003;54:1025–1034.

    Article  PubMed  CAS  Google Scholar 

  49. Bain MJ, Dwyer SM, Rusak B. Restraint stress affects hippocampal cell proliferation differently in rats and mice. Neurosci Lett 2004;368:7–10.

    Article  PubMed  CAS  Google Scholar 

  50. Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem 2002;80:539–547.

    Article  PubMed  CAS  Google Scholar 

  51. Nixon K, Crews FT. Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J Neurochem 2002;83:1087–1093.

    Article  PubMed  CAS  Google Scholar 

  52. Crews FT, Nixon K. Alcohol, neural stem cells, and adult neurogenesis. Alcohol Res Health 2003;27:197–204.

    PubMed  Google Scholar 

  53. Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 1996;16:2649–2658.

    PubMed  CAS  Google Scholar 

  54. O’Kusky JR, Ye P, D’Ercole AJ. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci 2000;20:8435–8442.

    PubMed  Google Scholar 

  55. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 1998;18:7768–7778.

    PubMed  CAS  Google Scholar 

  56. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki L, Tonooka S, et al. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)- and 20(S)-ginsenoside-Rg3, of red ginseng. Biol Pharm Bull 1995;18:1197–1202.

    PubMed  CAS  Google Scholar 

  57. Zhang JT. Comparison of pharmacological effect between ginsenoside Rg1 and Rb1. Basic Med Sci 2000;20:388–390.

    Google Scholar 

  58. Wang XY, Zhang JT. Improving effect of ginsenoside Rb1 on sexual function in male mice. Acta Pharm Sin 2000;35:492–485.

    CAS  Google Scholar 

  59. Yu Y, Zhou Q, Hang Y, Bu X, Jia W. Antiestrogenic effect of 20(S)-protopanaxadiol and its synergy with tamoxifen on breast cancer cells. Cancer 2007;109:2374–2382.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-tian Zhang  (张均田).

Additional information

Supported by the National Natural Science Foundation of China (No. C03030703)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, Sf., Zhang, Jt. New achievements in ginseng research and its future prospects. Chin. J. Integr. Med. 15, 403–408 (2009). https://doi.org/10.1007/s11655-009-0403-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-009-0403-6

Key Words

Navigation