Skip to main content

Advertisement

Log in

Neural correlates of impulsivity factors in psychiatric patients and healthy volunteers: a voxel-based morphometry study

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

According to bottom-up/top-down models, impulsivity facets are represented across the cerebral cortex and subcortex. Hypothesized gray matter correlates of motor, attentional and non-planning impulsivity were examined in groups of 35 psychiatric patients characterized by self-control problems and 18 healthy volunteers. Among patients, a positive correlation was found between motor impulsivity and the right cerebellum, and a negative correlation emerged between attentional impulsivity and the left lateral orbitofrontal cortex (OFC). Among controls, attentional and motor impulsivity correlated negatively with the left superior temporal gyrus, while non-planning impulsivity correlated positively with the left OFC and lateral frontopolar cortex. Follow-up analyses revealed convergence in correlation patterns from patients to controls, but not vice versa. That pattern suggested broader neural representation of the trait in the healthy controls, who were less impulsive than the psychiatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aron, A. R. (2007). The neural basis of inhibition in cognitive control. The Neuroscientist, 13, 214–228.

    Article  PubMed  Google Scholar 

  • Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177.

    Article  PubMed  Google Scholar 

  • Asahi, S., Okamoto, Y., Okada, G., Yamawaki, S., & Yokota, N. (2004). Negative correlation between right prefrontal activity during response inhibition and impulsiveness: a fMRI study. European Archives of Psychiatry and Clinical Neuroscience, 254, 245–251.

    PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839–851.

    Article  PubMed  Google Scholar 

  • Barkley, R. A. (1998). A theory of ADHD: Inhibition, executive functions, & time. In Attention Deficit Hyperactivity Disorder: A Handbook for Diagnosis and Treatment, 2nd Edn (pp. 225–260). New York: Guilford.

  • Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nature Neuroscience, 8, 1458–1463.

    Article  CAS  PubMed  Google Scholar 

  • Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making, and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.

    Article  CAS  PubMed  Google Scholar 

  • Berlin, H. A., Rolls, E. T., & Kischka, U. (2004). Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain, 127, 1108–1126.

    Article  CAS  PubMed  Google Scholar 

  • Bjork, J. M., Momenan, R., & Hommer, D. W. (2009). Delay discounting correlates with proportional lateral frontal cortex volumes. Biological Psychiatry, 65, 710–713.

    Article  PubMed  Google Scholar 

  • Boes, A. D., Bechara, A., Tranel, D., Anderson, S. W., Richman, L., & Nopoulos, P. (2009). Right ventromedial prefrontal cortex: a neuroanatomical correlate of impulse control in boys. Social Cognitive and Affective Neuroscience, 4, 1–9.

    Article  PubMed  Google Scholar 

  • Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402, 179–181.

    Article  CAS  PubMed  Google Scholar 

  • Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8, 539–546.

    Article  PubMed  Google Scholar 

  • Brown, S. M., Manuck, S. B., Flory, J. D., & Hariri, A. R. (2006). Neural basis of individual differences in impulsivity: contributions of corticolimbic circuits for behavioral arousal and control. Emotion, 6, 239–245.

    Article  PubMed  Google Scholar 

  • Burgess, P. W., Gilbert, S. J., & Dumontheil, I. (2007). Function and localization within rostral prefrontal cortex (area 10). Philosophical Transaction of the Royal Society B, 362, 887–899.

    Article  Google Scholar 

  • Clark, L., Bechara, A., Damasio, H., Aitken, M. R. F., Sahakian, B. J., & Robbins, T. W. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131, 1311–1322.

    Article  CAS  PubMed  Google Scholar 

  • DeYoung, C. G., Hirsch, J. B., Shane, M. S., Papademetris, X., Rajeevan, & Gray, J. R. (2010). Testing predictions from personality neuroscience: brain structure and the big five. Psychological Science, 21, 820–828.

    Article  PubMed  Google Scholar 

  • Dickman, S. J. (1990). Functional and dysfunctional impulsivity: personality and cognitive correlates. Journal of Personality and Social Personality, 58, 95–102.

    Article  CAS  Google Scholar 

  • Dickstein, S. G., Bannon, K., Castellanos, F. X., & Milham, M. P. (2006). The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. Journal of Child Psychology and Psychiatry, 47, 11051–1063.

    Article  Google Scholar 

  • Durston, S., Davidson, M. C., Mulder, M. J., Spicer, J. A., Galvan, A., Tottenham, N., et al. (2007). Neural and behavioral correlates of expectancy violations in attention-deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry, 48, 881–889.

    Article  PubMed  Google Scholar 

  • Duvernoy, H. (1991). The human brain surface, blood supply, and three-dimensional sectional anatomy (2nd ed.). New York: Springer-Verlag/Wien.

    Google Scholar 

  • Emerton, B. C., Jerram, M., Fulwiler, C., & Gansler, D. A. (2008). A VBM based exploration of MRI acquisition protocol variance. Poster presented at the annual meeting of the American Academy of Clinical Neuropsychology, Boston, MA.

  • Fuster, J. M. (2008). The prefrontal cortex (4th ed.). Boston: Academic.

    Google Scholar 

  • Gall, F. J. (1819). Anatomie et physiologie du système nerveux en général et anatomie du cerveau en particulier, vol. 4.

  • Gansler, D. A., McLaughlin, N. C. R., Iguchi, L., Jerram, M., Moore, D. W., Bhadelia, R., et al. (2009). A multivariate approach to aggression and the orbital frontal cortex in psychiatric patients. Psychiatry Research: Neuroimaging, 171, 145–154.

    Article  PubMed  Google Scholar 

  • Gaser, C. (2009) VBM5 version 1.19 [Computer software] Retrieved June 2009, from http://dbm.neuro.uni-jena.de/vbm/download/.

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 14, 21–36.

    Article  CAS  PubMed  Google Scholar 

  • Hariri, A. R., Brown, S. M., Williamson, D. E., Flory, J. D., de Wit, H., & Manuck, S. B. (2006). Preference for immediate over delayed rewards is associated with magnitide of ventral striatal activity. The Journal of Neuroscience, 26, 13213–13217.

    Article  CAS  PubMed  Google Scholar 

  • Hayasaka, S., Phan, K. L., Liberzon, I., Worsley, K. J., & Nichols, T. E. (2004). Nonstationary cluster-size inference with random field and permutation methods. NeuroImage, 22, 676–687. 36.

    Article  PubMed  Google Scholar 

  • Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–291.

    Article  CAS  PubMed  Google Scholar 

  • Karnath, H. O. (2001). New insights into the functions of the superior temporal cortex. Nature Reviews Neuroscience, 2, 568–576.

    Article  CAS  PubMed  Google Scholar 

  • Koechlin, E., & Hyafil, A. (2007). Anterior prefrontal function and the limits of human decision-making. Science, 318, 594–598.

    Article  CAS  PubMed  Google Scholar 

  • Koenigsberg, H. W., Fan, J., Ochsner, K. N., Liu, X., Guise, K. G., Pizzarello, S., et al. (2009). Neural correlates of the use of psychological distancing to regulate responses to negative social cues: a study of patients with borderline personality disorder. Biological Psychiatry, 66, 854–863.

    Article  PubMed  Google Scholar 

  • Krueger, R. F., Markon, E. M., Patrick, C. J., & Iacono, W. G. (2005). Externalizing psychopathology in adulthood: a dimensional-spectrum conceptualization and its implications for DSM-V. Journal of Abnormal Psychology, 114, 537–550.

    Article  PubMed  Google Scholar 

  • Mallory-Diniz, L., Fuentes, D., Leite, W. B., Correa, H., & Bechara, A. (2007). Impulsive behavior in adults with attention deficit/hyperactivity disorder: characterization of attentional, motor and cognitive impulsiveness. Journal of International Neuropsychological Society, 13, 693–698.

    Google Scholar 

  • Malykhin, N. V., Carter, R., Seres, P., & Coupland, N. J. (2010). Structural changes in the hippocampus in major depressive disorder: contributions of disease and treatment. Journal of Psychiatry and Neuroscience, 35, 337–343.

    Article  PubMed  Google Scholar 

  • Matsuo, K., Nicoletti, M., Nemoto, K., Hatch, J. P., Peluso, M. A. M., Nery, F. G., et al. (2009). A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Human Brain Mapping, 30, 1188–1195.

    Article  PubMed  Google Scholar 

  • McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503–507.

    Article  CAS  PubMed  Google Scholar 

  • Moeller, F. G., Barratt, E. S., Dougherty, D. M., Schmitz, J. M., & Swann, A. C. (2001). Psychiatric aspects of impulsivity. American Journal of Psychiatry, 158, 1783–1793.

    Article  CAS  PubMed  Google Scholar 

  • Monahan, J., Steadman, H. J., Appelbaum, P. S., Robbins, P. C., Mulvey, E. P., Silver, E., et al. (2000). Developing a clinically useful actuarial tool for assessing violence risk. British Journal of Psychiatry, 176, 312–319.

    Article  CAS  PubMed  Google Scholar 

  • Moncrieff, J., & Leo, J. (2010). A systematic review of the effects of antipsychotic drugs on brain volume. Psychological Medicine, 40, 1409–1422.

    Article  CAS  PubMed  Google Scholar 

  • Müller, N. G., & Knight, R. T. (2006). The functional neuroanatomy of working memory: contributions of human brain lesion studies. Neuroscience, 139, 51–58.

    Article  PubMed  Google Scholar 

  • O’Reilly, J. X., Mesulam, M. M., & Nobre, A. C. (2008). The cerebellum predicts the timing of perceptual events. The Journal of Neuroscience, 28, 2252–2260.

    Article  PubMed  Google Scholar 

  • Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt Impulsiveness Scale. Journal of Clinical Psychology, 51, 768–774.

    Article  CAS  PubMed  Google Scholar 

  • Petrides, M., Alivisatos, B., & Frey, S. (2002). Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proceedings of the National Academy of Sciences, 99, 5649–5654.

    Article  CAS  Google Scholar 

  • Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., & Van Hoesen, G. W. (2001). Prefrontal cortex in humans and apes: a comparative study of area 10. American Journal of Physical Anthropology, 114, 224–241.

    Article  CAS  PubMed  Google Scholar 

  • Soloff, P., Nutche, J., Goradia, D., & Diwadkar, V. (2008). Structural brain abnormalities in borderline personality disorder: a voxel-based morphometry study. Psychiatry Research, 164, 223–236.

    Article  PubMed  Google Scholar 

  • Stanford, M. S., Mathias, C. W., Dougherty, D. M., Lake, S. L., Anderson, N. E., & Patton, J. H. (2009). Fifty years of the Barratt Impulsiveness Scale: an update and review. Personality and Individual Difference, 47, 385–395.

    Article  Google Scholar 

  • Stahl, S. M. (2008). Stahl’s essential psychopharmacology: Neuroscientific basis and practical applications (3rd ed.). New York: Cambridge University Press.

    Google Scholar 

  • Swann, A. C., Steinberg, J. L., Lijffijt, M., & Moeller, F. G. (2008). Impulsivity: differential relationship to depression and mania in bipolar disorder. Journal of Affective Disorders, 106, 241–248.

    Article  PubMed  Google Scholar 

  • Tebartz, V. E. L., Trimble, M. R., & Ebert, D. (2001). Dual brain pathology in patients with affective aggressive episodes. Archives of General Psychiatry, 58, 1187–1188.

    Article  Google Scholar 

  • Vanderhasselt, M., De Raedt, D., & Baeken, C. (2009). Dorsolateral prefrontal cortex and Stroop performance: tackling the lateralization. Psychonomic Bulletin & Review, 16(3), 609–612.

    Article  Google Scholar 

  • Völlm, B. A., Zhao, L., Richardson, P., Clark, L., Deakin, J. F. W., Williams, S., et al. (2009). A voxel-based morphometric MRI study in men with borderline personality disorder: preliminary findings. Criminal Behavior and Mental Health, 19, 64–72.

    Article  Google Scholar 

  • Worsley, K. J., Andermann, M., Koulis, T., MacDonald, D., & Evans, A. C. (1999). Detecting changes in nonisotropic images. Human Brain Mapping, 8, 98–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was internally supported by the College of Arts and Sciences at Suffolk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Gansler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, A.K.W., Jerram, M., Fulwiler, C. et al. Neural correlates of impulsivity factors in psychiatric patients and healthy volunteers: a voxel-based morphometry study. Brain Imaging and Behavior 5, 52–64 (2011). https://doi.org/10.1007/s11682-010-9112-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-010-9112-1

Keywords

Navigation