Skip to main content
Log in

Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Complex skill learning at a joint initiates competition between its representation in the primary motor cortex (M1) and that of the neighboring untrained joint. This process of representational plasticity has been mapped by cortically-evoking simple movements. We investigated, following skill learning at a joint, 1) whether comparable processes of representational plasticity are observed when mapping is based on volitionally produced complex movements and 2) the consequence on the skill of the adjacent untrained joint. Twenty-four healthy subjects were assigned to either finger- or elbow-skill training or no-training control group. At pretest and posttest, subjects performed complex skill movements at finger, elbow and ankle concurrent with functional magnetic resonance imaging (fMRI) to define learning and allow mapping of corresponding activation-based representations in M1. Skill following both finger- and elbow- training transferred to the ankle (remote joint) (p = 0.05 and 0.05); however, finger training did not transfer to the elbow and elbow training did not transfer to the finger. Following finger training, location of the trained finger representation showed a trend (p = 0.08) for medial shift towards the representation of adjacent untrained elbow joint; the change in intensity of the latter representation was associated with elbow skill (Spearman’s ρ = −0.71, p = 0.07). Following elbow training, the trained elbow representation and the adjacent untrained finger representation increased their overlap (p = 0.02), which was associated with finger skill (Spearman’s ρ = −0.83, p = 0.04). Thus, our pilot study reveals comparable processes of representational plasticity with fMRI mapping of complex skill movements as have been demonstrated with cortically-evoked methods. Importantly, these processes may limit the degree of transfer of skill between trained and adjacent untrained joints. These pilot findings that await confirmation in large-scale studies have significant implications for neuro-rehabilitation. For instance, techniques, such as motor cortical stimulation, that can potentially modulate processes of representational plasticity between trained and adjacent untrained representations, may optimize transfer of skill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

M1:

Primary Motor Cortex

ICMS:

Intra Cortical Micro Stimulation

TMS:

Transcranial Magnetic Stimulation

KR:

Knowledge of Results

KP:

Knowledge of Performance

S-R:

Stimulus–Response

FingerGroup :

Finger Tracking Training Group

ElbowGroup :

Elbow Tracking Training Group

ControlGroup :

No Training Control Group

EMG:

Electromygraphy

MRI:

Magnetic Resonance Imaging

fMRI:

Functional Magnetic Resonance Imaging

BOLD:

Blood Oxygen Level-Dependent

EPI:

Echo Planar Imaging

TE:

Echo Time

TR:

Repetition Time

FA:

Flip Angle

FOV:

Field of View

AI:

Accuracy Index

AIFINGER :

Average Accuracy Index for 4 finger tracking trials during tracking test

AIELBOW :

Average Accuracy Index for 4 elbow tracking trials during tracking test

AIANKLE :

Average Accuracy Index for 4 ankle tracking trials during tracking test

GLM:

General Linear Model

FingerVOLUME :

Finger representation, defined by voxels significantly active during finger tracking trials with fMRI

ElbowVOLUME :

Elbow representation, defined by voxels significantly active during elbow tracking trials with fMRI

AnkleVOLUME :

Ankle representation, defined by voxels significantly active during ankle tracking trials with fMRI

POA:

Peak of Activation

FingerPREPOST :

Voxels within finger representation that are commonly active at pretest and posttest

ElbowPREPOST :

Voxels within elbow representation that are commonly active at pretest and posttest

AnklePREPOST :

Voxels within ankle representation that are commonly active at pretest and posttest

ICC:

Intraclass Correlation Coefficient

COM:

Center of Mass

References

  • Alkadhi, H., Crelier, G. R., Boendermaker, S. H., Golay, X., Hepp-Reymond, M. C., & Kollias, S. S. (2002). Reproducibility of primary motor cortex somatotopy under controlled conditions. AJNR. American Journal of Neuroradiology, 23(9), 1524–1532.

    PubMed  Google Scholar 

  • Anderson, D. I., Magill, R. A., Sekiya, H., & Ryan, G. (2005). Support for an explanation of the guidance effect in motor skill learning. Journal of Motor Behavior, 37(3), 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Bays, P. M., Flanagan, J. R., & Wolpert, D. M. (2005). Interference between velocity-dependent and position-dependent force-fields indicates that tasks depending on different kinematic parameters compete for motor working memory. Experimental Brain Research, 163(3), 400–405.

    Article  Google Scholar 

  • Beisteiner, R., Windischberger, C., Lanzenberger, R., Edward, V., Cunnington, R., Erdler, M., et al. (2001). Finger somatotopy in human motor cortex. NeuroImage, 13(6 Pt 1), 1016–1026.

    Article  PubMed  CAS  Google Scholar 

  • Bhatt, E., Nagpal, A., Greer, K. H., Grunewald, T. K., Steele, J. L., Wiemiller, J. W., et al. (2007). Effect of finger tracking combined with electrical stimulation on brain reorganization and hand function in subjects with stroke. Experimental Brain Research, 182(4), 435–447.

    Article  Google Scholar 

  • Bjorkman, A., Rosen, B., & Lundborg, G. (2004). Acute improvement of hand sensibility after selective ipsilateral cutaneous forearm anaesthesia. European Journal of Neuroscience, 20(10), 2733–2736.

    Article  PubMed  Google Scholar 

  • Bjorkman, A., Weibull, A., Rosen, B., Svensson, J., & Lundborg, G. (2009). Rapid cortical reorganisation and improved sensitivity of the hand following cutaneous anaesthesia of the forearm. European Journal of Neuroscience, 29(4), 837–844. doi:10.1111/j.1460-9568.2009.06629.x.

    Article  PubMed  Google Scholar 

  • Blackwell, J. R., & Newell, K. M. (1996). The informational role of knowledge of results in motor learning. Acta Psychologica, 92(2), 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382(6588), 252–255.

    Article  PubMed  CAS  Google Scholar 

  • Butefisch, C. M., Davis, B. C., Wise, S. P., Sawaki, L., Kopylev, L., Classen, J., et al. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3661–3665.

    PubMed  CAS  Google Scholar 

  • Carey, J. R. (1990). Manual stretch: effect on finger movement control and force control in stroke subjects with spastic extrinsic finger flexor muscles. Archives of Physical Medicine and Rehabilitation, 71(11), 888–894.

    PubMed  CAS  Google Scholar 

  • Carey, J. R., Bogard, C. L., King, B. A., & Suman, V. J. (1994). Finger-movement tracking scores in healthy subjects. Perceptual and Motor Skills, 79(1 Pt 2), 563–576.

    Article  PubMed  CAS  Google Scholar 

  • Carey, J. R., Bhatt, E., & Nagpal, A. (2005). Neuroplasticity promoted by task complexity. Exercise and Sport Sciences Reviews, 33(1), 24–31.

    PubMed  Google Scholar 

  • Carey, J. R., Greer, K. R., Grunewald, T. K., Steele, J. L., Wiemiller, J. W., Bhatt, E., et al. (2006). Primary motor area activation during precision-demanding versus simple finger movement. Neurorehabilitation and Neural Repair, 20(3), 361–370.

    Article  PubMed  Google Scholar 

  • Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79(2), 1117–1123.

    PubMed  CAS  Google Scholar 

  • Clement, F., & Belleville, S. (2009). Test-retest reliability of fMRI verbal episodic memory paradigms in healthy older adults and in persons with mild cognitive impairment. Human Brain Mapping, 30(12), 4033–4047. doi:10.1002/hbm.20827.

    Article  PubMed  Google Scholar 

  • Cohen, M. S., & DuBois, R. M. (1999). Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. Journal of Magnetic Resonance Imaging, 10(1), 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Conner, J. M., Culberson, A., Packowski, C., Chiba, A. A., & Tuszynski, M. H. (2003). Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron, 38(5), 819–829. doi:S0896627303002885[pii].

    Article  PubMed  CAS  Google Scholar 

  • Coq, J. O., & Xerri, C. (1998). Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats. Experimental Brain Research, 121(2), 191–204.

    Article  CAS  Google Scholar 

  • Dassonville, P., Lewis, S. M., Zhu, X. H., Ugurbil, K., Kim, S. G., & Ashe, J. (2001). The effect of stimulus–response compatibility on cortical motor activation. NeuroImage, 13(1), 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Dechent, P., & Frahm, J. (2003). Functional somatotopy of finger representations in human primary motor cortex. Human Brain Mapping, 18(4), 272–283.

    Article  PubMed  Google Scholar 

  • Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305–307.

    Article  PubMed  CAS  Google Scholar 

  • Floyer-Lea, A., Wylezinska, M., Kincses, T., & Matthews, P. M. (2006). Rapid modulation of GABA concentration in human sensorimotor cortex during motor learning. Journal of Neurophysiology, 95(3), 1639–1644. doi:10.1152/jn.00346.2005.

    Article  PubMed  CAS  Google Scholar 

  • Franchi, G. (2000). Reorganization of vibrissal motor representation following severing and repair of the facial nerve in adult rats. Experimental Brain Research, 131(1), 33–43.

    Article  CAS  Google Scholar 

  • Gerloff, C., Corwell, B., Chen, R., Hallett, M., & Cohen, L. G. (1998). The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain, 121(Pt 9), 1695–1709.

    Article  PubMed  Google Scholar 

  • Havel, P., Braun, B., Rau, S., Tonn, J. C., Fesl, G., Bruckmann, H., et al. (2006). Reproducibility of activation in four motor paradigms. An fMRI study. Journal of Neurology, 253(4), 471–476. doi:10.1007/s00415-005-0028-4.

    Article  PubMed  Google Scholar 

  • Hess, G., & Donoghue, J. P. (1994). Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. Journal of Neurophysiology, 71(6), 2543–2547.

    PubMed  CAS  Google Scholar 

  • Hlustik, P., Solodkin, A., Gullapalli, R. P., Noll, D. C., & Small, S. L. (2001). Somatotopy in human primary motor and somatosensory hand representations revisited. Cerebral Cortex, 11(4), 312–321.

    Article  PubMed  CAS  Google Scholar 

  • Hlustik, P., Solodkin, A., Noll, D. C., & Small, S. L. (2004). Cortical plasticity during three-week motor skill learning. Journal of Clinical Neurophysiology, 21(3), 180–191.

    Article  PubMed  Google Scholar 

  • Huntley, G. W. (1997). Correlation between patterns of horizontal connectivity and the extend of short-term representational plasticity in rat motor cortex. Cerebral Cortex, 7(2), 143–156.

    Article  PubMed  CAS  Google Scholar 

  • Huntley, G. W., & Jones, E. G. (1991). Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. Journal of Neurophysiology, 66(2), 390–413.

    PubMed  CAS  Google Scholar 

  • Hyde, J. S., Biswal, B. B., & Jesmanowicz, A. (2000). Optimum voxel size in fMRI. Proceedings of the International Society for Magnetic Resonance in Medicine, 8, 240.

    Google Scholar 

  • Imamizu, H., & Shimojo, S. (1995). The locus of visual-motor learning at the task or manipulator level: implications from intermanual transfer. Journal of Experimental Psychology. Human Perception and Performance, 21(4), 719–733.

    Article  PubMed  CAS  Google Scholar 

  • Jankowska, E., Padel, Y., & Tanaka, R. (1975). Projections of pyramidal tract cells to alpha-motoneurones innervating hind-limb muscles in the monkey. The Journal of Physiology, 249(3), 637–667.

    PubMed  CAS  Google Scholar 

  • Jenkins, W. M., Merzenich, M. M., Ochs, M. T., Allard, T., & Guic-Robles, E. (1990). Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. Journal of Neurophysiology, 63(1), 82–104.

    PubMed  CAS  Google Scholar 

  • Kapreli, E., Athanasopoulos, S., Papathanasiou, M., Van Hecke, P., Keleki, D., Peeters, R., et al. (2007). Lower limb sensorimotor network: issues of somatotopy and overlap. Cortex, 43(2), 219–232.

    Article  PubMed  Google Scholar 

  • Kimberley, T. J., Birkholz, D. D., Hancock, R. A., VonBank, S. M., & Werth, T. N. (2008). Reliability of fMRI during a continuous motor task: assessment of analysis techniques. Journal of Neuroimaging, 18(1), 18–27. doi:10.1111/j.1552-6569.2007.00163.x.

    Article  PubMed  Google Scholar 

  • Kleim, J. A., Barbay, S., & Nudo, R. J. (1998). Functional reorganization of the rat motor cortex following motor skill learning. Journal of Neurophysiology, 80(6), 3321–3325.

    PubMed  CAS  Google Scholar 

  • Kleim, J. A., Hogg, T. M., VandenBerg, P. M., Cooper, N. R., Bruneau, R., & Remple, M. (2004). Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. Journal of Neuroscience, 24(3), 628–633. doi:10.1523/JNEUROSCI.3440-03.2004.

    Article  PubMed  CAS  Google Scholar 

  • Kohl, R. M., & Guadagnoli, M. A. (1996). The scheduling of knowledge of results. Journal of Motor Behavior, 28(3).

  • Kossut, M., & Siucinska, E. (1998). Learning-induced expansion of cortical maps–what happens to adjacent cortical representations? Neuroreport, 9(18), 4025–4028.

    Article  PubMed  CAS  Google Scholar 

  • Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2(11), 1026–1031.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. N., Hsu, E. W., Rashkin, E., Thatcher, J. W., Kreitschitz, S., Gale, P., et al. (2010). Reliability of fMRI motor tasks in structures of the corticostriatal circuitry: implications for future studies and circuit function. NeuroImage, 49(2), 1282–1288. doi:10.1016/j.neuroimage.2009.09.072.

    Article  PubMed  Google Scholar 

  • Liepert, J., Uhde, I., Graf, S., Leidner, O., & Weiller, C. (2001). Motor cortex plasticity during forced-use therapy in stroke patients: a preliminary study. Journal of Neurology, 248(4), 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J. Z., Dai, T. H., Elster, T. H., Sahgal, V., Brown, R. W., & Yue, G. H. (2000). Simultaneous measurement of human joint force, surface electromyograms, and functional MRI-measured brain activation. Journal of Neuroscience Methods, 101(1), 49–57.

    Article  PubMed  CAS  Google Scholar 

  • Logothetis, N. K., & Pfeuffer, J. (2004). On the nature of the bold fmri contrast mechanism. Magnetic Resonance Imaging, 22(10), 1517–1531.

    Article  PubMed  Google Scholar 

  • Lotze, M., Erb, M., Flor, H., Huelsmann, E., Godde, B., & Grodd, W. (2000). fMRI evaluation of somatotopic representation in human primary motor cortex. NeuroImage, 11(5 Pt 1), 473–481.

    Article  PubMed  CAS  Google Scholar 

  • Loubinoux, I., Carel, C., Alary, F., Boulanouar, K., Viallard, G., Manelfe, C., et al. (2001). Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism, 21(5), 592–607.

    PubMed  CAS  Google Scholar 

  • Luft, A. R., Smith, G. V., Forrester, L., Whitall, J., Macko, R. F., Hauser, T. K., et al. (2002). Comparing brain activation associated with isolated upper and lower limb movement across corresponding joints. Human Brain Mapping, 17(2), 131–140.

    Article  PubMed  Google Scholar 

  • Lund, T. E., Norgaard, M. D., Rostrup, E., Rowe, J. B., & Paulson, O. B. (2005). Motion or activity: their role in intra- and inter-subject variation in fMRI. NeuroImage, 26(3), 960–964.

    Article  PubMed  Google Scholar 

  • Lundborg, G., & Rosen, B. (2007). Hand function after nerve repair. Acta Physiologica, 189, 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Manoach, D. S., Halpern, E. F., Kramer, T. S., Chang, Y., Goff, D. C., Rauch, S. L., et al. (2001). Test-retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. The American Journal of Psychiatry, 158(6), 955–958.

    Article  PubMed  CAS  Google Scholar 

  • McKiernan, B. J., Marcario, J. K., Karrer, J. H., & Cheney, P. D. (1998). Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. Journal of Neurophysiology, 80(4), 1961–1980.

    PubMed  CAS  Google Scholar 

  • Molina-Luna, K., Hertler, B., Buitrago, M. M., & Luft, A. R. (2008). Motor learning transiently changes cortical somatotopy. NeuroImage, 40(4), 1748–1754. doi:10.1016/j.neuroimage.2007.11.018.

    Article  PubMed  Google Scholar 

  • Monfils, M. H., & Teskey, G. C. (2004). Skilled-learning-induced potentiation in rat sensorimotor cortex: a transient form of behavioural long-term potentiation. Neuroscience, 125(2), 329–336. doi:10.1016/j.neuroscience.2004.01.048.

    Article  PubMed  CAS  Google Scholar 

  • Monfils, M. H., Plautz, E. J., & Kleim, J. A. (2005). In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. The Neuroscientist, 11(5), 471–483. doi:10.1177/1073858405278015.

    Article  PubMed  Google Scholar 

  • Muellbacher, W., Richards, C., Ziemann, U., Wittenberg, G., Weltz, D., Boroojerdi, B., et al. (2002). Improving hand function in chronic stroke. Archives of Neurology, 59(8), 1278–1282.

    Article  PubMed  Google Scholar 

  • Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644.

    Article  PubMed  CAS  Google Scholar 

  • Nudo, R. J., & Milliken, G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology, 75(5), 2144–2149.

    PubMed  CAS  Google Scholar 

  • Nudo, R. J., Milliken, G. W., Jenkins, W. M., & Merzenich, M. M. (1996). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. Journal of Neuroscience, 16(2), 785–807.

    PubMed  CAS  Google Scholar 

  • Nudo, R. J., Wise, B. M., SiFuentes, F., & Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272(5269), 1791–1794.

    Article  PubMed  CAS  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Panzer, S., Wilde, H., & Shea, C. H. (2006). Learning of similar complex movement sequences: proactive and retroactive effects on learning. Journal of Motor Behavior, 38(1), 60–70.

    Article  PubMed  Google Scholar 

  • Park, J. W., Kwon, Y. H., Lee, M. Y., Bai, D., Nam, K. S., Cho, Y. W., et al. (2008). Brain activation pattern according to exercise complexity: a functional MRI study. NeuroRehabilitation, 23(3), 283–288.

    PubMed  Google Scholar 

  • Pascual-Leone, A., Cammarota, A., Wassermann, E. M., Brasil-Neto, J. P., Cohen, L. G., & Hallett, M. (1993). Modulation of motor cortical outputs to the reading hand of braille readers. Annals of Neurology, 34(1), 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone, A., Nguyet, D., Cohen, L. G., Brasil-Neto, J. P., Cammarota, A., & Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 74(3), 1037–1045.

    PubMed  CAS  Google Scholar 

  • Pearce, A. J., Thickbroom, G. W., Byrnes, M. L., & Mastaglia, F. L. (2000). Functional reorganisation of the corticomotor projection to the hand in skilled racquet players. Experimental Brain Research, 130(2), 238–243.

    Article  CAS  Google Scholar 

  • Plautz, E. J., Milliken, G. W., & Nudo, R. J. (2000). Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiology of Learning and Memory, 74(1), 27–55.

    Article  PubMed  CAS  Google Scholar 

  • Plow, E. B., Arora, P., Pline, M. A., Binenstock, M. T., & Carey, J. R. (2010). Within-limb somatotopy in primary motor cortex-revealed using fMRI. Cortex, 46(3), 310–321. doi:10.1016/j.cortex.2009.02.024.

    Article  PubMed  Google Scholar 

  • Portney, L. G., & Watkins, M. P. (2000). Foundations of clinical research: Applications to practice (2nd ed.).

  • Ramanathan, D., Conner, J. M., & Tuszynski, M. H. (2006). A form of motor cortical plasticity that correlates with recovery of function after brain injury. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11370–11375. doi:10.1073/pnas.0601065103.

    Article  PubMed  CAS  Google Scholar 

  • Rioult-Pedotti, M. S., Friedman, D., Hess, G., & Donoghue, J. P. (1998). Strengthening of horizontal cortical connections following skill learning. Nature Neuroscience, 1(3), 230–234. doi:10.1038/678.

    Article  PubMed  CAS  Google Scholar 

  • Rombouts, S. A., Barkhof, F., Hoogenraad, F. G., Sprenger, M., & Scheltens, P. (1998). Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging. Magnetic Resonance Imaging, 16(2), 105–113. doi:10.1016/S0730-725X(97)00253-1

    Article  PubMed  CAS  Google Scholar 

  • Rosen, B., Bjorkman, A., & Lundborg, G. (2006). Improved sensory relearning after nerve repair induced by selective temporary anaesthesia - a new concept in hand rehabilitation. J Hand Surg [Br], 31(2), 126–132.

    Google Scholar 

  • Sanes, J. N., Suner, S., Lando, J. F., & Donoghue, J. P. (1988). Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. Proceedings of the National Academy of Sciences of the United States of America, 85(6), 2003–2007.

    Article  PubMed  CAS  Google Scholar 

  • Schieber, M. H. (2001). Constraints on somatotopic organization in the primary motor cortex. Journal of Neurophysiology, 86(5), 2125–2143.

    PubMed  CAS  Google Scholar 

  • Schmidt, R. A. (2003). Motor schema theory after 27 years: reflections and implications for a new theory. Research Quarterly for Exercise and Sport, 74(4), 366–375.

    PubMed  Google Scholar 

  • Schmidt, R. A., & Lee, T. D. (1999). Motor control and learning: A behavioral emphasis. Champaign: Human Kinetics.

    Google Scholar 

  • Shumway-Cook, A., & Woollacott, M. H. (2001). Motor control: Theory and practical applications (2nd ed.). Baltimore: Lippincot Williams and Wilkins.

    Google Scholar 

  • Stagg, C. J., Bachtiar, V., & Johansen-Berg, H. (2011). The role of GABA in human motor learning. Current Biology, 21(6), 480–484. doi:10.1016/j.cub.2011.01.069.

    Article  PubMed  CAS  Google Scholar 

  • Tyc, F., Boyadjian, A., & Devanne, H. (2005). Motor cortex plasticity induced by extensive training revealed by transcranial magnetic stimulation in human. European Journal of Neuroscience, 21(1), 259–266. doi:10.1111/j.1460-9568.2004.03835.x.

    Article  PubMed  CAS  Google Scholar 

  • van Mier, H. I., & Petersen, S. E. (2006). Intermanual transfer effects in sequential tactuomotor learning: evidence for effector independent coding. Neuropsychologia, 44(6), 939–949.

    Article  PubMed  Google Scholar 

  • Vangheluwe, S., Suy, E., Wenderoth, N., & Swinnen, S. P. (2006). Learning and transfer of bimanual multifrequency patterns: effector-independent and effector-specific levels of movement representation. Experimental Brain Research, 170(4), 543–554.

    Article  Google Scholar 

  • Veltman, D. J., Friston, K. J., Sanders, G., & Price, C. J. (2000). Regionally specific sensitivity differences in fMRI and PET: where do they come from? NeuroImage, 11(6 Pt 1), 575–588. doi:10.1006/nimg.2000.0581.

    Article  PubMed  CAS  Google Scholar 

  • Verwey, W. B., & Wright, D. L. (2004). Effector-independent and effector-dependent learning in the discrete sequence production task. Psychological Research, 68(1), 64–70.

    Article  PubMed  Google Scholar 

  • Waldvogel, D., van Gelderen, P., Immisch, I., Pfeiffer, C., & Hallett, M. (2000). The variability of serial fMRI data: correlation between a visual and a motor task. Neuroreport, 11(17), 3843–3847.

    Article  PubMed  CAS  Google Scholar 

  • Wassermann, E. M., McShane, L. M., Hallett, M., & Cohen, L. G. (1992). Noninvasive mapping of muscle representations in human motor cortex. Electroencephalography and Clinical Neurophysiology, 85(1), 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Weigelt, C., Williams, A. M., Wingrove, T., & Scott, M. A. (2000). Transfer and motor skill learning in association football. Ergonomics, 43(10), 1698–1707.

    Article  PubMed  CAS  Google Scholar 

  • Wigmore, V., Tong, C., & Flanagan, J. R. (2002). Visuomotor rotations of varying size and direction compete for a single internal model in motor working memory. Journal of Experimental Psychology. Human Perception and Performance, 28(2), 447–457.

    Article  PubMed  Google Scholar 

  • Wu, C. W., & Kaas, J. H. (1999). Reorganization in primary motor cortex of primates with long-standing therapeutic amputations. Journal of Neuroscience, 19(17), 7679–7697.

    PubMed  CAS  Google Scholar 

  • Xerri, C., Coq, J. O., Merzenich, M. M., & Jenkins, W. M. (1996). Experience-induced plasticity of cutaneous maps in the primary somatosensory cortex of adult monkeys and rats. Journal of Physiology, Paris, 90(3–4), 277–287.

    Article  PubMed  CAS  Google Scholar 

  • Ziemann, U., Hallett, M., & Cohen, L. G. (1998). Mechanisms of deafferentation-induced plasticity in human motor cortex. Journal of Neuroscience, 18(17), 7000–7007.

    PubMed  CAS  Google Scholar 

  • Ziemann, U., Muellbacher, W., Hallett, M., & Cohen, L. G. (2001). Modulation of practice-dependent plasticity in human motor cortex. Brain, 124(Pt 6), 1171–1181.

    Article  PubMed  CAS  Google Scholar 

  • Ziemann, U., Wittenberg, G. F., & Cohen, L. G. (2002). Stimulation-induced within-representation and across-representation plasticity in human motor cortex. Journal of Neuroscience, 22(13), 5563–5571.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Minnesota’s Doctoral Dissertation Fellowship to [E. B. P.]; National Center for Research Resources at the National Institutes of Health (grant numbers P41 RR008079, M01-RR00400 to Center for Magnetic Resonance and Research, Minneapolis, MN); National Institutes of Health supporting investigator roles- 1K01HD069504 (E. B. P.) and 1 R01 HD 053153-01A2 and 1 RC1 HD063838-01 (J. R. C) and the Program in Physical Therapy at the University of Minnesota. The authors would like to thank Ms. Pooja Arora, Ms. Megan Pline, Ms. Meagan Binenstock, and Dr. Kathleen Anderson for their assistance in data collection and analysis. Also, the authors would like to thank Drs. Theresa Kimberley, James Ashe and Carl Kukulka for valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ela B. Plow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plow, E.B., Carey, J.R. Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences. Brain Imaging and Behavior 6, 437–453 (2012). https://doi.org/10.1007/s11682-012-9158-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9158-3

Keywords

Navigation