Skip to main content
Log in

Verbal working memory impairments following traumatic brain injury: an fNIRS investigation

  • Neuroimaging and Rehabilitation SPECIAL ISSUE
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The construct of working memory and its reliance on dorsolateral prefrontal cortex (DLPFC) have been the focus of many studies in healthy subjects and in clinical populations. However, transfer of knowledge gained from cognitive science studies to clinical applications can be a challenging goal. This scarce cross-dissemination may be partially due to the use of ‘tools’ that are limited in their ability to generate meaningful information about impairments in clinical groups. To this end, this paper investigates the use of functional near-infrared spectroscopy (fNIRS), which offers unique opportunities for recording neuroactivation. Specifically, we examine measures of the DLPFC hemodynamic response during a working memory task in adults with traumatic brain injury (TBI) and healthy controls. Analysis of hemodynamic measures showed significant differences between the two groups, even without differences in behavioral performance. Additional subtle disparities were linked to levels of performance in TBI and healthy subjects. fNIRS hemodynamic measures may therefore provide novel information to existing theories and knowledge of the working memory construct. Future studies may further define these subtle differences captured by fNIRS to help identify which components affect inter-individual variations in performance and could play a contributing role in the choice and planning of neurorehabilitation interventions targeting working memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allain, P., Etcharry-Bouyx, F., & Le Gall, D. (2001). A case study of selective impairment of the central executive component of working memory after a focal frontal lobe damage. Brain and Cognition, 45(1), 21–43. doi:10.1006/brcg.2000.1249.

    PubMed  CAS  Google Scholar 

  • Andreasen, N. C., O’Leary, D. S., Arndt, S., Cizadlo, T., Rezai, K., Watkins, G. L., et al. (1995). I. PET studies of memory: novel and practiced free recall of complex narratives. NeuroImage, 2(4), 284–295. doi:10.1006/nimg.1995.1036.

    PubMed  CAS  Google Scholar 

  • Arenth, P. M., Ricker, J. H., & Schultheis, M. T. (2007). Applications of Functional Near-Infrared Spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities. Clin Neuropsychol, 21(1), 38–57.

    PubMed  Google Scholar 

  • Azechi, M., Iwase, M., Ikezawa, K., Takahashi, H., Canuet, L., Kurimoto, R., et al. (2010). Discriminant analysis in schizophrenia and healthy subjects using prefrontal activation during frontal lobe tasks: A near-infrared spectroscopy. Schizophrenia Research, 117(1), 52–60. doi:10.1016/j.schres.2009.10.003.

    PubMed  Google Scholar 

  • Baddeley, A. (1986). Working memory. Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.

    PubMed  Google Scholar 

  • Baddeley, A. D., & Hitch, G. (1974). Working Memory. In G. H. Bower (Ed.), Psychology of Learning and Motivation (Vol. Volume 8, pp. 47–89): Academic Press.

  • Bakvis, P., Spinhoven, P., Putman, P., Zitman, F. G., & Roelofs, K. (2010). The effect of stress induction on working memory in patients with psychogenic nonepileptic seizures. Epilepsy Behav. doi:10.1016/j.yebeh.2010.08.026.

    PubMed  Google Scholar 

  • Beauchamp, M. H., Dagher, A., Aston, J. A., & Doyon, J. (2003). Dynamic functional changes associated with cognitive skill learning of an adapted version of the tower of London task. NeuroImage, 20(3), 1649–1660.

    PubMed  CAS  Google Scholar 

  • Beneventi, H., Tonnessen, F. E., Ersland, L., & Hugdahl, K. (2010). Executive working memory processes in dyslexia: behavioral and fMRI evidence. Scandinavian Journal of Psychology, 51(3), 192–202. doi:10.1111/j.1467-9450.2010.00808.x.

    PubMed  Google Scholar 

  • Binder, L. M. (1986). Persisting symptoms after mild head-injury—a review of the postconcussive syndrome. Journal of Clinical and Experimental Neuropsychology, 8(4), 323–346.

    PubMed  CAS  Google Scholar 

  • Birbaumer, N. (2006). Breaking the silence: Brain-computer interfaces (BCI) for communication and motor control. Psychophysiology, 43(6), 517–532. doi:10.1111/j.1469-8986.2006.00456.x.

    PubMed  Google Scholar 

  • Bozkurt, A., Rosen, A., Rosen, H., & Onaral, B. (2005). A portable near infrared spectroscopy system for bedside monitoring of newborn brain. Biomedical Engineering Online, 4(1), 29. doi:10.1186/1475-925X-4-29.

    PubMed  PubMed Central  Google Scholar 

  • Brittain, J. L., La Marche, J. A., Reeder, K. P., Roth, D. L., & Boll, T. J. (1991). Effects of age and IQ on paced auditory serial addition task (PASAT) performance. Clinical Neuropsychologist, 5(2), 163–175.

    Google Scholar 

  • Bublak, P., Schubert, T., Matthes-von Cramon, G., & von Cramon, Y. (2000). Differential demands on working memory for guiding a simple action sequence: evidence from closed-head-injured subjects. Journal of Clinical and Experimental Neuropsychology, 22(2), 176–190.

    PubMed  CAS  Google Scholar 

  • Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23(Supplement 1), S220–S233.

    PubMed  Google Scholar 

  • Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47.

    PubMed  CAS  Google Scholar 

  • Chan, R. C., Huang, J., Guo, L., Cao, X., Hong, X., & Gao, Z. (2010). Executive control in schizophrenia in task involving semantic inhibition and working memory. Psychiatry Research, 179(3), 259–266. doi:10.1016/j.psychres.2009.07.014.

    PubMed  Google Scholar 

  • Chance, B., Zhuang, Z., UnAh, C., Alter, C., & Lipton, L. (1993). Cognition-activated low-frequency modulation of light absorption in human brain. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3770–3774.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chance, B., An\, E., Nioka, S., Zhou, S., Hong, L., Worden, K., et al. (1998). A novel method for fast imaging of brain function, non-invasively, with light. [Article]. Optics Express, 2(10), 411–423.

    PubMed  CAS  Google Scholar 

  • Christodoulou, C., DeLuca, J., Ricker, J. H., Madigan, N. K., Bly, B. M., Lange, G., et al. (2001). Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. Journal of Neurology, Neurosurgery, and Psychiatry, 71(2), 161–168.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ciaramelli, E., Serino, A., Di Santantonio, A., & Ladavas, E. (2006). Central executive system impairment in traumatic brain injury. Brain and Cognition, 60(2), 198–199.

    PubMed  CAS  Google Scholar 

  • Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604–608. doi:10.1038/386604a0.

    PubMed  CAS  Google Scholar 

  • Conners, C. K., & Jett, J. L. (1999). ADHD in adults and children: The latest assessment and treatment strategies. Kansas City: Compact Clinicals.

    Google Scholar 

  • Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423.

    PubMed  Google Scholar 

  • Cutini, S., Scatturin, P., Menon, E., Bisiacchi, P. S., Gamberini, L., Zorzi, M., et al. (2008). Selective activation of the superior frontal gyrus in task-switching: an event-related fNIRS study. NeuroImage. doi:10.1016/j.neuroimage.2008.05.013.

    PubMed  Google Scholar 

  • D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Brain Research. Cognitive Brain Research, 7(1), 1–13.

    PubMed  Google Scholar 

  • D’Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: an event-related fMRI study. Brain and Cognition, 41(1), 66–86. doi:10.1006/brcg.1999.1096.

    PubMed  Google Scholar 

  • Delpy, D. T., Cope, M., van der Zee, P., Arridge, S., Wray, S., & Wyatt, J. (1988). Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine and Biology, 33(12), 1433–1442.

    PubMed  CAS  Google Scholar 

  • Dumas, J. A., Kutz, A. M., Naylor, M. R., Johnson, J. V., & Newhouse, P. A. (2010). Increased memory load-related frontal activation after estradiol treatment in postmenopausal women. Hormones and Behavior. doi:10.1016/j.yhbeh.2010.09.003.

    PubMed  PubMed Central  Google Scholar 

  • Ehlis, A. C., Herrmann, M. J., Plichta, M. M., & Fallgatter, A. J. (2007). Cortical activation during two verbal fluency tasks in schizophrenic patients and healthy controls as assessed by multi-channel near-infrared spectroscopy. Psychiatry Research, 156(1), 1–13. doi:10.1016/j.pscychresns.2006.11.007.

    PubMed  Google Scholar 

  • Fallgatter, A. J., & Strik, W. K. (1997). Right frontal activation during the continuous performance test assessed with near-infrared spectroscopy in healthy subjects. Neuroscience Letters, 223(2), 89–92.

    PubMed  CAS  Google Scholar 

  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. [Historical Article Review]. NeuroImage, 63(2), 921–935. doi:10.1016/j.neuroimage.2012.03.049.

    PubMed  Google Scholar 

  • Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. The Journal of Neuroscience, 13(4), 1479–1497.

    PubMed  CAS  Google Scholar 

  • Genova, H. M., Sumowski, J. F., Chiaravalloti, N. D., Voelbel, G. T., & Deluca, J. (2009). Cognition in multiple sclerosis: a review of neuropsychological and fMRI research. Frontiers in Bioscience, 14, 1730–1744.

    CAS  Google Scholar 

  • Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In F. Plum (Ed.), Handbook of physiology. The nervous system. Higher functions of the brain (pp. 373–417). Bethesda: American Physiological Association.

    Google Scholar 

  • Gotlib, I. H., & Joormann, J. (2010). Cognition and depression: current status and future directions. Annu Rev Clin Psychol, 6, 285–312. doi:10.1146/annurev.clinpsy.121208.131305.

    PubMed  PubMed Central  Google Scholar 

  • Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., et al. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199–217.

    Google Scholar 

  • Hale, J. B., Hoeppner, J.-A. B., & Fiorello, C. A. (2002). Analyzing digit span components for assessment of attention processes. Journal of Psychoeducational Assessment, 20(2), 128–143. doi:10.1177/073428290202000202.

    Google Scholar 

  • Harrison-Felix, C., Newton, C., Hall, K., & Kreutzer, J. (1996). Descriptive findings from the traumatic brain injury model systems national database. Journal of Head Trauma Rehabilitation, 11, 1–14.

    Google Scholar 

  • Herrmann, M. J., Ehlis, A. C., & Fallgatter, A. J. (2003). Frontal activation during a verbal-fluency task as measured by near-infrared spectroscopy. Brain Research Bulletin, 61(1), 51–56.

    PubMed  CAS  Google Scholar 

  • Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. [Review]. Journal of the International Neuropsychological Society : JINS, 14(4), 526–534. doi:10.1017/S1355617708080788.

    PubMed  Google Scholar 

  • Hillary, F. G., Genova, H. M., Chiaravalloti, N. D., Rypma, B., & DeLuca, J. (2006). Prefrontal modulation of working memory performance in brain injury and disease. Human Brain Mapping, 27(11), 837–847.

    PubMed  Google Scholar 

  • Hillary, F. G., Medaglia, J. D., Gates, K., Molenaar, P. C., Slocomb, J., Peechatka, A., et al. (2011). Examining working memory task acquisition in a disrupted neural network. [Research Support, Non-U.S. Gov’t]. Brain : a journal of neurology, 134(Pt 5), 1555–1570. doi:10.1093/brain/awr043.

    Google Scholar 

  • Hitch, G. J., Fastame, M. C., & Flude, B. (2005). How is the serial order of a verbal sequence coded? Some comparisons between models. Memory, 13(3–4), 247–258.

    PubMed  Google Scholar 

  • Hock, C., Villringer, K., Muller-Spahn, F., Wenzel, R., Heekeren, H., Schuh-Hofer, S., et al. (1997). Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer’s disease monitored by means of near-infrared spectroscopy (NIRS) – correlation with simultaneous rCBF-PET measurements. Brain Research, 755(2), 293–303.

    PubMed  CAS  Google Scholar 

  • Hoffmann, S., Tittgemeyer, M., & von Cramon, D. Y. (2007). Cognitive impairment in multiple sclerosis. Current Opinion in Neurology, 20(3), 275–280. doi:10.1097/WCO.0b013e32810c8e87.

    PubMed  Google Scholar 

  • Honma, M., Soshi, T., Kim, Y. H., & Kuriyama, K. (2010). Right prefrontal activity reflects the ability to overcome sleepiness during working memory tasks: a functional near-infrared spectroscopy study. PLoS One, 5(9), e12923. doi:10.1371/journal.pone.0012923.

    PubMed  PubMed Central  Google Scholar 

  • Horovitz, S. G., & Gore, J. C. (2004). Simultaneous event-related potential and near-infrared spectroscopic studies of semantic processing. Human Brain Mapping, 22(2), 110–115.

    PubMed  Google Scholar 

  • Hoshi, Y. (2011). Towards the next generation of near-infrared spectroscopy. [Review]. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 369(1955), 4425–4439. doi:10.1098/rsta.2011.0262.

    PubMed  CAS  Google Scholar 

  • Howard, M. W., & Kahana, M. J. (1999). Contextual variability and serial position effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 923–941.

    PubMed  CAS  Google Scholar 

  • Izzetoglu, M., Izzetoglu, K., Bunce, S., Ayaz, H., Devaraj, A., Onaral, B., et al. (2005). Functional near-infrared neuroimaging. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(2), 153–159.

    PubMed  Google Scholar 

  • Izzetoglu, M., Bunce, S. C., Izzetoglu, K., Onaral, B., & Pourrezaei, K. (2007). Functional brain imaging using near-infrared technology. IEEE Engineering in Medicine and Biology Magazine, 26(4), 38–46.

    PubMed  Google Scholar 

  • Izzetoglu, K., Ayaz, H., Merzagora, A., Izzetoglu, M., Shewokis, P. A., Bunce, S. C., et al. (2011). The evolution of field deployable fNIR spectroscopy from bench to clinical settings. Journal of Innovative Optical Health Sciences, 4(3), 239–250.

    Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010). The concurrent validity of the N-back task as a working memory measure. Memory, 18(4), 394–412. doi:10.1080/09658211003702171.

    PubMed  Google Scholar 

  • Kennan, R. P., Horovitz, S. G., Maki, A., Yamashita, Y., Koizumi, H., & Gore, J. C. (2002). Simultaneous recording of event-related auditory oddball response using transcranial near infrared optical topography and surface EEG. NeuroImage, 16(3 Pt 1), 587–592.

    PubMed  Google Scholar 

  • Krainik, A., Hund-Georgiadis, M., Zysset, S., & von Cramon, D. Y. (2005). Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke, 36(6), 1146–1152. doi:10.1161/01.STR.0000166178.40973.a7.

    PubMed  Google Scholar 

  • Kubota, Y., Toichi, M., Shimizu, M., Mason, R. A., Findling, R. L., Yamamoto, K., et al. (2006). Prefrontal hemodynamic activity predicts false memory–a near-infrared spectroscopy study. NeuroImage, 31(4), 1783–1789.

    PubMed  Google Scholar 

  • Langfitt, T. W., Obrist, W. D., Alavi, A., Grossman, R. I., Zimmerman, R., Jaggi, J., et al. (1986). Computerized tomography, magnetic resonance imaging, and positron emission tomography in the study of brain trauma. Preliminary observations. Journal of Neurosurgery, 64(5), 760–767.

    CAS  Google Scholar 

  • Leon-Carrion, J., Damas, J., Izzetoglu, K., Pourrezai, K., Martin-Rodriguez, J. F., Barroso y Martin, J. M., et al. (2006). Differential time course and intensity of PFC activation for men and women in response to emotional stimuli: a functional near-infrared spectroscopy (fNIRS) study. Neuroscience Letters, 403(1–2), 90–95. doi:10.1016/j.neulet.2006.04.050.

    PubMed  CAS  Google Scholar 

  • Levin, H. S., Benton, A. L., & Grossman, R. G. (1982). Neurobehavioral consequences of closed head injury. New York: Oxford University Press.

    Google Scholar 

  • Levy, R., & Goldman-Rakic, P. S. (2000). Segregation of working memory functions within the dorsolateral prefrontal cortex. Experimental Brain Research, 133(1), 23–32.

    PubMed  CAS  Google Scholar 

  • Lindauer, U., Dirnagl, U., Fuchtemeier, M., Bottiger, C., Offenhauser, N., Leithner, C., & Royl, G. (2010). Pathophysiological interference with neurovascular coupling - when imaging based on hemoglobin might go blind. Frontiers in Neuroenergetics, 2. doi: 10.3389/fnene.2010.00025

  • Logie, R. H. (1995). Visuo-spatial working memory. Hove, Sussex: Lawrence Erlbaum.

    Google Scholar 

  • Lovell, M. R., Pardini, J. E., Welling, J., Collins, M. W., Bakal, J., Lazar, N., et al. (2007). Functional brain abnormalities are related to clinical recovery and time to return-to-play in athletes. Neurosurgery, 61(2), 352–359. doi:10.1227/01.NEU.0000279985.94168.7F. discussion 359–360.

    PubMed  Google Scholar 

  • Matsuo, K., Kato, T., Fukuda, M., & Kato, N. (2000). Alteration of hemoglobin oxygenation in the frontal region in elderly depressed patients as measured by near-infrared spectroscopy. Journal of Neuropsychiatry, 12(4), 465–471.

    CAS  Google Scholar 

  • McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53(6), 1300–1308.

    PubMed  CAS  Google Scholar 

  • McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14(5), 1004–1012.

    PubMed  CAS  Google Scholar 

  • McAllister, T. W., Flashman, L. A., McDonald, B. C., & Saykin, A. J. (2006). Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. Journal of Neurotrauma, 23(10), 1450–1467. doi:10.1089/neu.2006.23.1450.

    PubMed  Google Scholar 

  • McDonald, B. C., Flashman, L. A., & Saykin, A. J. (2002). Executive dysfunction following traumatic brain injury: neural substrates and treatment strategies. Neurorehabilitation, 17(4), 333–344.

    PubMed  Google Scholar 

  • Medaglia, J. D., Chiou, K. S., Slocomb, J., Fitzpatrick, N. M., Wardecker, B. M., Ramanathan, D., et al. (2011). The less BOLD, the wiser: support for the latent resource hypothesis after traumatic brain injury. Human Brain Mapping, n/a-n/a.. doi:10.1002/hbm.21264.

    Google Scholar 

  • Mehta, M. A., Owen, A. M., Sahakian, B. J., Mavaddat, N., Pickard, J. D., & Robbins, T. W. (2000). Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. The Journal of Neuroscience, 20(6), RC65.

    PubMed  CAS  Google Scholar 

  • Miyai, I., Yagura, H., Hatakenaka, M., Oda, I., Konishi, I., & Kubota, K. (2003). Longitudinal optical imaging study for locomotor recovery after stroke. Stroke, 34(12), 2866–2870.

    PubMed  Google Scholar 

  • Negoro, H., Sawada, M., Iida, J., Ota, T., Tanaka, S., & Kishimoto, T. (2010). Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Child Psychiatry and Human Development, 41(2), 193–203. doi:10.1007/s10578-009-0160-y.

    PubMed  Google Scholar 

  • Newsome, M. R., Scheibel, R. S., Steinberg, J. L., Troyanskaya, M., Sharma, R. G., Rauch, R. A., et al. (2007). Working memory brain activation following severe traumatic brain injury. Cortex, 43(1), 95–111.

    PubMed  Google Scholar 

  • Owen, A. M., Evans, A. C., & Petrides, M. (1996). Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cerebral Cortex, 6(1), 31–38.

    PubMed  CAS  Google Scholar 

  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.

    PubMed  Google Scholar 

  • Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychol Aging, 17(2), 299–320.

    PubMed  Google Scholar 

  • Perlstein, W. M., Cole, M. A., Demery, J. A., Seignourel, P. J., Dixit, N. K., Larson, M. J., et al. (2004). Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. Journal of the International Neuropsychological Society, 10(5), 724–741. doi:10.1017/S1355617704105110.

    PubMed  Google Scholar 

  • Petrides, M. (1994). Frontal lobes and behaviour. Current Opinion in Neurobiology, 4(2), 207–211.

    PubMed  CAS  Google Scholar 

  • Pfurtscheller, G., Bauernfeind, G., Wriessnegger, S. C., & Neuper, C. (2010). Focal frontal (de)oxyhemoglobin responses during simple arithmetic. International Journal of Psychophysiology, 76(3), 186–192. doi:10.1016/j.ijpsycho.2010.03.013.

    PubMed  Google Scholar 

  • Philipose, L. E., Alphs, H., Prabhakaran, V., & Hillis, A. E. (2007). Testing conclusions from functional imaging of working memory with data from acute stroke. Behavioral Neurolology, 18(1), 37–43.

    Google Scholar 

  • Postle, B. R., Berger, J. S., & D’Esposito, M. (1999). Functional neuroanatomical double dissociation of mnemonic and executive control processes contributing to working memory performance. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 12959–12964.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prat, C. S., Keller, T. A., & Just, M. A. (2007). Individual differences in sentence comprehension: a functional magnetic resonance imaging investigation of syntactic and lexical processing demands. Journal of Cognitive Neuroscience, 19(12), 1950–1963. doi:10.1162/jocn.2007.19.12.1950.

    PubMed  PubMed Central  Google Scholar 

  • Reichle, E. D., Carpenter, P. A., & Just, M. A. (2000). The neural bases of strategy and skill in sentence-picture verification. Cognitive Psychology, 40(4), 261–295. doi:10.1006/cogp.2000.0733.

    PubMed  CAS  Google Scholar 

  • Ricker, J. H., Hillary, F. G., & DeLuca, J. (2001). Functionally activated brain imaging (O-15 PET and fMRI) in the study of learning and memory after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 16(2), 191–205.

    PubMed  CAS  Google Scholar 

  • Roussotte, F. F., Bramen, J. E., Nunez, S. C., Quandt, L. C., Smith, L., O’Connor, M. J., et al. (2010). Abnormal brain activation during working memory in children with prenatal exposure to drugs of abuse: The effects of methamphetamine, alcohol, and polydrug exposure. NeuroImage. doi:10.1016/j.neuroimage.2010.10.072.

    PubMed  Google Scholar 

  • Ruocco, A. C., Medaglia, J. D., Ayaz, H., & Chute, D. L. (2010). Abnormal prefrontal cortical response during affective processing in borderline personality disorder. [Research Support, Non-U.S. Gov’t]. Psychiatry Research, 182(2), 117–122. doi:10.1016/j.pscychresns.2010.01.011.

    PubMed  Google Scholar 

  • Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6558–6563.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. NeuroImage, 9(2), 216–226. doi:10.1006/nimg.1998.0404.

    PubMed  CAS  Google Scholar 

  • Rypma, B., Berger, J. S., & D’Esposito, M. (2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14(5), 721–731. doi:10.1162/08989290260138627.

    PubMed  Google Scholar 

  • Sanchez-Carrion, R., Fernandez-Espejo, D., Junque, C., Falcon, C., Bargallo, N., Roig, T., et al. (2008a). A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. [Research Support, Non-U.S. Gov’t]. NeuroImage, 43(3), 421–429. doi:10.1016/j.neuroimage.2008.08.003.

    PubMed  Google Scholar 

  • Sanchez-Carrion, R., Gomez, P. V., Junque, C., Fernandez-Espejo, D., Falcon, C., Bargallo, N., et al. (2008b). Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. Journal of Neurotrauma, 25(5), 479–494. doi:10.1089/neu.2007.0417.

    PubMed  Google Scholar 

  • Schecklmann, M., Ehlis, A. C., Plichta, M. M., Romanos, J., Heine, M., Boreatti-Hummer, A., et al. (2008). Diminished prefrontal oxygenation with normal and above-average verbal fluency performance in adult ADHD. J Psychiatr Res. doi:10.1016/j.jpsychires.2008.02.005.

    PubMed  Google Scholar 

  • Scheibel, R. S., Pearson, D. A., Faria, L. P., Kotrla, K. J., Aylward, E., Bachevalier, J., et al. (2003). An fMRI study of executive functioning after severe diffuse TBI. Brain Injury, 17(11), 919–930.

    PubMed  CAS  Google Scholar 

  • Scheibel, R. S., Newsome, M. R., Steinberg, J. L., Pearson, D. A., Rauch, R. A., Mao, H., et al. (2007). Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. Neurorehabilitation and Neural Repair, 21(1), 36–45. doi:10.1177/1545968306294730.

    PubMed  Google Scholar 

  • Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Steinberg, J. L., Goldstein, F. C., Mao, H., et al. (2009). Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. Journal of Neurotrauma, 26(9), 1447–1461. doi:10.1089/neu.2008.0736.

    PubMed  PubMed Central  Google Scholar 

  • Schreppel, T., Egetemeir, J., Schecklmann, M., Plichta, M. M., Pauli, P., Ellgring, H., et al. (2008). Activation of the Prefrontal Cortex in Working Memory and Interference Resolution Processes Assessed with Near-Infrared Spectroscopy. Neuropsychobiology, 57(4), 188–193. doi:10.1159/000147473.

    PubMed  Google Scholar 

  • Schroeter, M. L., Zysset, S., Kupka, T., Kruggel, F., & von Cramon, D. Y. (2002). Near-infrared spectroscopy can detect brain activity during a color-word matching Stroop task in an event-related design. Human Brain Mapping, 17(1), 61–71.

    PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 12061–12068.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661.

    PubMed  CAS  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology: General, 18(6), 643–662.

    Google Scholar 

  • Tian, F., Sharma, V., Kozel, F. A., & Liu, H. (2009). Functional near-infrared spectroscopy to investigate hemodynamic responses to deception in the prefrontal cortex. Brain Research, 1303, 120–130. doi:10.1016/j.brainres.2009.09.085.

    PubMed  CAS  Google Scholar 

  • Townsend, J., Bookheimer, S. Y., Foland-Ross, L. C., Sugar, C. A., & Altshuler, L. L. (2010). fMRI abnormalities in dorsolateral prefrontal cortex during a working memory task in manic, euthymic and depressed bipolar subjects. Psychiatry Research, 182(1), 22–29. doi:10.1016/j.pscychresns.2009.11.010.

    PubMed  PubMed Central  Google Scholar 

  • Tuchin, V. V. (2002). Handbook of Optical Biomedical Diagnostics: SPIE Publications.

  • Turner, G. R., & Levine, B. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71(11), 812–818. doi:10.1212/01.wnl.0000325640.18235.1c.

    PubMed  PubMed Central  Google Scholar 

  • Van Snellenberg, J. X. (2009). Working memory and long-term memory deficits in schizophrenia: is there a common substrate? Psychiatry Research, 174(2), 89–96. doi:10.1016/j.pscychresns.2009.04.001.

    PubMed  Google Scholar 

  • Wechsler, D. A. (1997). Wechsler adult intelligence scale-III. New York: Psychological Corporation.

    Google Scholar 

  • Weissman, D. H., Woldorff, M. G., Hazlett, C. J., & Mangun, G. R. (2002). Effects of practice on executive control investigated with fMRI. Brain Research. Cognitive Brain Research, 15(1), 47–60.

    PubMed  CAS  Google Scholar 

  • Wright, H. H., & Shisler, R. J. (2005). Working memory in aphasia: theory, measures, and clinical implications. American journal of speech-language pathology, 14(2), 107–118. doi:10.1044/1058-0360(2005/012).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna C. Rodriguez Merzagora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez Merzagora, A.C., Izzetoglu, M., Onaral, B. et al. Verbal working memory impairments following traumatic brain injury: an fNIRS investigation. Brain Imaging and Behavior 8, 446–459 (2014). https://doi.org/10.1007/s11682-013-9258-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-013-9258-8

Keywords

Navigation