Skip to main content

Advertisement

Log in

Hippocampal activation and connectivity in the aging brain

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The hippocampus and underlying cortices are highly susceptible to pathologic change with increasing age. Using an associative face-scene (Face-Place) encoding task designed to target these regions, we investigated activation and connectivity patterns in cognitively normal older adults. Functional MRI scans were collected in 210 older participants (mean age = 76.4 yrs) in the Baltimore Longitudinal Study of Aging (BLSA). Brain activation patterns were examined during encoding of novel Face-Place pairs. Functional connectivity of the hippocampus was also examined during encoding, with seed regions placed along the longitudinal axis in the head, body and tail of the structure. In the temporal lobe, task activation patterns included coverage of the hippocampus and underlying ventral temporal cortices. Extensive activation was also seen in frontal, parietal and occipital lobes of the brain. Functional connectivity analyses during overall encoding showed that the head of the hippocampus was connected to frontal and anterior/middle temporal regions, the body with frontal, widespread temporal and occipital regions, and the tail with posterior temporal and occipital cortical regions. Connectivity limited to encoding of subsequently remembered stimuli showed a similar pattern for the hippocampal body, but differing patterns for the head and tail regions. These results show that the Face-Place task produces activation along the occipitotemporal visual pathway including medial temporal areas. The connectivity results also show that patterns of functional connectivity vary throughout the anterior-posterior extent of the hippocampus during memory encoding. As these patterns include regions vulnerable to pathologic change in early stages of Alzheimer’s disease, continued longitudinal assessment of these individuals can provide valuable information regarding changes in brain-behavior relationships that may occur with advancing age and the onset of cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen, P., Morris, R., Amaral, D., Bliss, T., & O'Keefe, J. (2007). Historical persepctive: proposed functions, biological characteristics, and neurobiological models of the hippocampus. In P. Andersen, R. Morris, D. Amaral, T. Bliss & J. O'Keefe (Eds.), The hippocampus book. New York: Oxford University Press.

    Google Scholar 

  • Atri, A., O’Brien, J. L., Sreenivasan, A., Rastegar, S., Salisbury, S., DeLuca, A. N., et al. (2011). Test-retest reliability of memory task functional magnetic resonance imaging in Alzheimer disease clinical trials. Archives of Neurology, 68(5), 599–606.

  • Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41.

    Article  CAS  PubMed  Google Scholar 

  • Awipi, T., & Davachi, L. (2008). Content-specific source encoding in the human medial temporal lobe. Journal of Experimental Psychology. Learning, Memory, and Cognition , 34(4), 769–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball, M. J. (1977). Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathologica , 37(2), 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Binder, J. R., Bellgowan, P. S., Hammeke, T. A., Possing, E. T., & Frost, J. A. (2005). A comparison of two FMRI protocols for eliciting hippocampal activation. Epilepsia, 46(7), 1061–1070.

    Article  PubMed  Google Scholar 

  • Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., & Braak, E. (1995). Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiology of Aging, 16(3), 271–278., (discussion 278 – 84).

  • Braak, H., & Braak, E., (1997). Pattern of cortical lesions in Alzheimer’s disease. In K. Iqbal, B. Winbald, T. Nishimura, M. Takeda, & H. Wisniewski (Eds.), Alzheimer’s disease: Biology, diagnosis and therapeutics (pp. 227–237). Chicago: John Wiley & Sons Ltd.

  • Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Carr, V. A., Rissman, J., & Wagner, A. D. (2010). Imaging the human medial temporal lobe with high-resolution fMRI. Neuron, 65(3), 298–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., et al. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. Journal of Neuroscience, 26(40), 10222–10231.

  • Chase, H. W., Clos, M., Dibble, S., Fox, P., Grace, A. A., Phillips, M. L., & Eickhoff, S. B. (2015). Evidence for an anterior-posterior differentiation in the human hippocampal formation revealed by meta-analytic parcellation of fMRI coordinate maps: focus on the subiculum. Neuroimage, 113, 44–60.

    Article  PubMed  Google Scholar 

  • Chua, E. F., Schacter, D. L., Rand-Giovannetti, E., & Sperling, R. A. (2007). Evidence for a specific role of the anterior hippocampal region in successful associative encoding. Hippocampus, 17(11), 1071–1080.

    Article  PubMed  Google Scholar 

  • Collin, S. H., Milivojevic, B., & Doeller, C. F. (2015). Memory hierarchies map onto the hippocampal long axis in humans. Nature Neuroscience, 18(11), 1562–1564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, J. A., & Olson, I. R. (2014). Beyond the FFA: The role of the ventral anterior temporal lobes in face processing. Neuropsychologia, 61, 65–79.

    Article  PubMed  Google Scholar 

  • Constable, R. T., Carpentier, A., Pugh, K., Westerveld, M., Oszunar, Y., & Spencer, D. D. (2000). Investigation of the human hippocampal formation using a randomized event-related paradigm and Z-shimmed functional MRI. Neuroimage, 12(1), 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Daselaar, S. M., Veltman, D. J., Rombouts, S. A., Raaijmakers, J. G., & Jonker, C. (2003). Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain, 126(Pt 1), 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Dennis, N. A., Hayes, S. M., Prince, S. E., Madden, D. J., Huettel, S. A., & Cabeza, R. (2008). Effects of aging on the neural correlates of successful item and source memory encoding. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(4), 791–808.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickerson, B. C., & Eichenbaum, H. (2010). The episodic memory system: neurocircuitry and disorders. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 35(1), 86–104.

  • Dickerson, B. C., Salat, D. H., Greve, D. N., Chua, E. F., Rand-Giovannetti, E., Rentz, D. M., et al. (2005). Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology, 65(3), 404–411.

  • Doshi, J., Erus, G., Ou, Y., Resnick, S. M., Gur, R. C., Gur, R. E., Satterthwaite, T. D., Furth, S., Davatzikos, C., & Alzheimer's Neuroimaging, I. (2016). MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. Neuroimage, 127, 186–195.

    Article  PubMed  Google Scholar 

  • Eichenbaum, H., Sauvage, M., Fortin, N., Komorowski, R., & Lipton, P. (2012). Towards a functional organization of episodic memory in the medial temporal lobe. Neuroscience and Biobehavioral Reviews , 36(7), 1597–1608.

    Article  PubMed  Google Scholar 

  • Fransson, P., Merboldt, K. D., Ingvar, M., Petersson, K. M., & Frahm, J. (2001). Functional MRI with reduced susceptibility artifact: high-resolution mapping of episodic memory encoding. Neuroreport, 12(7), 1415–1420.

    Article  CAS  PubMed  Google Scholar 

  • Gauthier, I., & Tarr, M. J. (2016). Visual object recognition: do we (finally) know more now than we did? Annual Review of Vision Science, 2, 377–396.

    Article  PubMed  Google Scholar 

  • Grady, C. L., McIntosh, A. R., Horwitz, B., Maisog, J. M., Ungeleider, L. G., Mentis, M. J., Pietrini, P., Schapiro, M. B., & Haxby, J. V. (1995). Age-related reductions in human recognition memory due to impaired encoding. Science, 269, 218–221.

    Article  CAS  PubMed  Google Scholar 

  • Gron, G., Bittner, D., Schmitz, B., Wunderlich, A. P., Tomczak, R., & Riepe, M. W. (2003). Variability in memory performance in aged healthy individuals: an fMRI study. Neurobiology of Aging , 24(3), 453–462.

    Article  PubMed  Google Scholar 

  • Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., et al. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences , 88, 1621–1625.

  • Hayes, S. M., Baena, E., Truong, T. K., & Cabeza, R. (2010). Neural mechanisms of context effects on face recognition: automatic binding and context shift decrements. Journal of Cognitive Neuroscience , 22(11), 2541–2554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jagust, W. (2013). Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron, 77(2), 219–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkinson, M., Beckmann, C., Behrens, T., Woolrich, M., & Smith, S. (2012). FSL. NeuroImage, 62, 782–790.

    Article  PubMed  Google Scholar 

  • Johnson, S. C., Schmitz, T. W., Moritz, C. H., Meyerand, M. E., Rowley, H. A., Alexander, A. L., et al. (2006). Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiology of Aging , 27(11), 1604–1612.

  • Jurick, S. M., Weissberger, G. H., Clark, L. R., Wierenga, C. E., Chang, Y. L., Schiehser, D. M., Han, S. D., Jak, A. J., Dev, S. I., & Bondi, M. W. 2017. Faulty adaptation to repeated face-name associative pairs in mild cognitive impairment is predictive of cognitive decline. Archives of Clinical Neuropsychology:1–16.

  • Kesner, R. P., & Rolls, E. T. (2015). A computational theory of hippocampal function, and tests of the theory: new developments. Neuroscience and Biobehavioral Reviews , 48, 92–147.

    Article  PubMed  Google Scholar 

  • Kircher, T., Weis, S., Leube, D., Freymann, K., Erb, M., Jessen, F., et al. (2008). Anterior hippocampus orchestrates successful encoding and retrieval of non-relational memory: an event-related fMRI study. European Archives of Psychiatry and Clinical Neuroscience , 258(6), 363–372.

  • Kirwan, C. B., Wixted, J. T., & Squire, L. R. (2008). Activity in the medial temporal lobe predicts memory strength, whereas activity in the prefrontal cortex predicts recollection. The Journal of Neuroscience , 28(42), 10541–10548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein, A., Andersson, J., Ardekani, B., Ashburner, J., Avants, B., Chiang, M. -C., et al. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802.

  • Kohler, S., Crane, J., & Milner, B. (2002). Differential contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes. Hippocampus, 12(6), 718–723.

    Article  PubMed  Google Scholar 

  • Kohler, S., Danckert, S., Gati, J. S., & Menon, R. S. (2005). Novelty responses to relational and non-relational information in the hippocampus and the parahippocampal region: a comparison based on event-related fMRI. Hippocampus, 15(6), 763–774.

    Article  PubMed  Google Scholar 

  • Kohler, S., Kapur, S., Moscovitch, M., Winocur, G., & Houle, S. (1995). Dissociation of pathways for object and spatial vision: a PET study in humans. Neuroreport, 6(14), 1865–1868.

    Article  CAS  PubMed  Google Scholar 

  • Liang, J. C., Wagner, A. D., & Preston, A. R. (2013). Content representation in the human medial temporal lobe. Cerebral Cortex, 23(1), 80–96.

    Article  PubMed  Google Scholar 

  • Malykhin, N. V., Huang, Y., Hrybouski, S., & Olsen, F. (2017). Differential vulnerability of hippocampal subfields and anteroposterior hippocampal subregions in healthy cognitive aging. Neurobiology of Aging , 59, 121–134.

    Article  PubMed  Google Scholar 

  • Mandzia, J. L., McAndrews, M. P., Grady, C. L., Graham, S. J., & Black, S. E. (2009). Neural correlates of incidental memory in mild cognitive impairment: an fMRI study. Neurobiology of Aging , 30(5), 717–730.

    Article  PubMed  Google Scholar 

  • Menon, V., Boyett-Anderson, J. M., & Reiss, A. L. (2005). Maturation of medial temporal lobe response and connectivity during memory encoding. Brain Research. Cognitive Brain Research , 25(1), 379–385.

    Article  CAS  PubMed  Google Scholar 

  • Menon, V., White, C., Eliez, S., Glover, G., & Reiss, A. (2000). Analysis of a distributed neural system involved in spatial information, novelty, and memory processing. Human Brain Mapping , 11, 117–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, S. L., Celone, K., DePeau, K., Diamond, E., Dickerson, B. C., Rentz, D., et al. (2008). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences of the United States of America , 105(6), 2181–2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minear, M., & Park, D. (2004). A lifespan database of adult facial stimuli. Behavior Research Methods, Instruments, & Computers, 36, 630–633.

    Article  Google Scholar 

  • Nadel, L., & Peterson, M. A. (2013). The hippocampus: part of an interactive posterior representational system spanning perceptual and memorial systems. Journal of Experimental Psychology. General , 142(4), 1242–1254.

    Article  PubMed  Google Scholar 

  • Narasinga Rao, B., Prasad Rao, K., & Ramana Rao, R. (2012). Morphometric study of hippocampus in adult human brains. International Journal of Basic and Applied Medical Sciences, 2(2), 139–143.

    Google Scholar 

  • O’Bryant, S. E., & McCaffrey, R. J. (2006). Preliminary findings on the cross cultural test of face recognition. Applied Neuropsychology, 13(4), 223–229.

  • Park, D. C., Welsh, R. C., Marshuetz, C., Gutchess, A. H., Mikels, J., Polk, T. A., et al. (2003). Working memory for complex scenes: age differences in frontal and hippocampal activations. Journal of Cognitive Neuroscience , 15(8), 1122–1134.

    Article  PubMed  Google Scholar 

  • Persson, J., & Nyberg, L. (2006). Altered brain activity in healthy seniors: what does it mean? Progress in Brain Research , 157, 45–56.

    Article  PubMed  Google Scholar 

  • Pihlajamaki, M., O’Keefe, K., O’Brien, J., Blacker, D., & Sperling, R. A. (2011). Failure of repetition suppression and memory encoding in aging and Alzheimer’s disease. Brain Imaging and Behavior , 5(1), 36–44.

  • Plachti, A., Eickhoff, S. B., Hoffstaedter, F., Patil, K. R., Laird, A. R., Fox, P. T., Amunts, K., & Genon, S. (2019). Multimodal parcellations and extensive behavioral profiling tackling the hippocampus gradient. Cerebral Cortex.

  • Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the human hippocampus. Trends in Cognitive Sciences , 17(5), 230–240.

    Article  PubMed  Google Scholar 

  • Putcha, D., Brickhouse, M., O’Keefe, K., Sullivan, C., Rentz, D., Marshall, G., et al. (2011). Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults. The Journal of Neuroscience , 31(48), 17680–17688.

  • Rabin, L. A., Smart, C. M., & Amariglio, R. E. (2017). Subjective cognitive decline in preclinical Alzheimer’s disease. Annual Review of Clinical Psychology , 13, 369–396.

  • Rand-Giovannetti, E., Chua, E. F., Driscoll, A. E., Schacter, D. L., Albert, M. S., & Sperling, R. A. (2006). Hippocampal and neocortical activation during repetitive encoding in older persons. Neurobiology of Aging , 27(1), 173–182.

    Article  PubMed  Google Scholar 

  • Rentz, D. M., Amariglio, R. E., Becker, J. A., Frey, M., Olson, L. E., Frishe, K., Carmasin, J., Maye, J. E., Johnson, K. A., & Sperling, R. A. (2011). Face-name associative memory performance is related to amyloid burden in normal elderly. Neuropsychologia, 49(9), 2776–2783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Resnick, S. M., Goldszal, A. F., Davatzikos, C., Golski, S., Kraut, M. A., Metter, E. J., et al. (2000). One-year age changes in MRI brain volumes in older adults. Cerebral Cortex, 10(5), 464–472.

    Article  CAS  PubMed  Google Scholar 

  • Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology and Psychiatry , 20, 11–21.

    Article  CAS  Google Scholar 

  • Shafer, A. T., & Dolcos, F. (2014). Dissociating retrieval success from incidental encoding activity during emotional memory retrieval, in the medial temporal lobe. Frontiers in Behavioral Neuroscience , 8, 177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shock, N. W., Greulich, R. C., Andres, R., Arenberg, D., Costa, P. T., Jr., Lakatta, E., & Tobin, J. D. (1984). Normal human aging: The Baltimore longitudinal study of aging. Washington, D.C.: U.S. Government Printing Office.

    Google Scholar 

  • Shrager, Y., Kirwan, C. B., & Squire, L. R. (2008). Activity in both hippocampus and perirhinal cortex predicts the memory strength of subsequently remembered information. Neuron, 59(4), 547–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperling, R. A., Bates, J. F., Cocchiarella, A. J., Schacter, D. L., Rosen, B. R., & Albert, M. S. (2001). Encoding novel face-name associations: a functional MRI study. Human Brain Mapping , 14(3), 129–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starkstein, S. E. (2014). Anosognosia in Alzheimer’s disease: diagnosis, frequency, mechanism and clinical correlates. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 61, 64–73.

  • Stern, C. E., Corkin, S., Gonzalez, R. G., Guimaraes, A. R., Baker, J. R., Jennings, P. J., et al. (1996). The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proceedings of the National Academy of Sciences , 93(16), 8660–8665.

    Article  CAS  Google Scholar 

  • Strange, B. A., Hurlemann, R., Duggins, A., Heinze, H. J., & Dolan, R. J. (2005). Dissociating intentional learning from relative novelty responses in the medial temporal lobe. Neuroimage, 25(1), 51–62.

    Article  PubMed  Google Scholar 

  • Ta, A. T., Huang, S. E., Chiu, M. J., Hua, M. S., Tseng, W. Y., Chen, S. H., & Qiu, A. (2012). Age-related vulnerabilities along the hippocampal longitudinal axis. Human Brain Mapping , 33(10), 2415–2427.

    Article  PubMed  Google Scholar 

  • Thal, D. R., Rub, U., Orantes, M., & Braak, H. (2002). Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology, 58(12), 1791–1800.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M., (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge: MIT Press.

    Google Scholar 

  • Vannini, P., Amariglio, R., Hanseeuw, B., Johnson, K. A., McLaren, D. G., Chhatwal, J., Pascual-Leone, A., Rentz, D., & Sperling, R. A. (2017a). Memory self-awareness in the preclinical and prodromal stages of Alzheimer's disease. Neuropsychologia, 99, 343–349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vannini, P., Hanseeuw, B., Munro, C. E., Amariglio, R. E., Marshall, G. A., Rentz, D. M., et al. (2017b). Anosognosia for memory deficits in mild cognitive impairment: insight into the neural mechanism using functional and molecular imaging. Neuroimage: Clinical, 15, 408–414.

    Article  Google Scholar 

  • Viskontas, I. V., Knowlton, B. J., & Fried, I. (2016). Responses of neurons in the medial temporal lobe during encoding and recognition of face-scene pairs. Neuropsychologia, 90, 200–209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamboni, G., Drazich, E., McCulloch, E., Filippini, N., Mackay, C. E., Jenkinson, M., et al. (2013). Neuroanatomy of impaired self-awareness in Alzheimer’s disease and mild cognitive impairment. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 49(3), 668–678.

Download references

Acknowledgements

We are grateful to the BLSA participants, staff and the NIA 3T Imaging Center for their dedication to these studies. We also thank Danielle June for her assistance with the manuscript. This research was supported by the Intramural Research Program of the NIH, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori L. Beason-Held.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1

Hippocampal ROIs and Spatial Normalization. Hippocampal ROIs and Spatial Normalization. An example of the three hippocampal ROIs in subject native space (left), mapped onto their normalized MPRAGE in MNI space (middle), and mapped onto the BLSA-template normalized to MNI space (right). All normalized MPRAGE and functional data were visualized for errors as part of our quality control pipeline (DOCX 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beason-Held, L.L., Shafer, A.T., Goh, J.O. et al. Hippocampal activation and connectivity in the aging brain. Brain Imaging and Behavior 15, 711–726 (2021). https://doi.org/10.1007/s11682-020-00279-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-020-00279-6

Keywords

Navigation