Skip to main content

Advertisement

Log in

Evolution of Placentation in Primates: Implications of Mammalian Phylogeny

  • Synthesis
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Primates are quite unique among placental mammals in that the two extreme types of placentation are present within a single order. Strepsirrhines (lemurs and lorisiforms) have non-invasive epitheliochorial placentation, whereas haplorhines (tarsiers and higher primates) have highly invasive haemochorial placentation. Resemblance in placenta type in fact provided the first evidence that tarsiers are linked to higher primates and distinct from lemurs and lorisiforms. Tree-shrews differ from both primate subgroups in having moderately invasive endotheliochorial placentation, while colugos have invasive haemochorial placentation like haplorhines. All three kinds of placentation have been identified as primitive for placentals by different authors, but until recently the prevailing interpretation has been that non-invasive epitheliochorial placentation is primitive and “less efficient”. Opposing this interpretation, Martin (Primate origins and evolution: a phylogenetic reconstruction, 1990) proposed that moderately invasive endotheliochorial placentation is primitive. Epitheliochorial placentation is unlikely to be primitive because it is predominantly associated with large body size, relatively long gestation periods and precocial offspring. Furthermore, some strepsirrhines and other placental mammals with epitheliochorial placentation retain indications of former invasiveness of the placenta. The recent availability of comprehensive molecular phylogenies for placental mammals has provided an independent framework to determine the most parsimonious interpretation of the evolution of placenta types and other reproductive features. It has consistently emerged that epitheliochorial placentation is best explained as a derived condition, although opinions differ as to whether the ancestral condition for placental mammals (and hence for primates) was endotheliochorial or haemochorial. It is argued that on balance the most likely ancestral condition is endotheliochorial. Comparative evidence across placentals clearly indicates that epitheliochorial placentation is not less efficient than more invasive forms of placentation, at least with respect to growth in overall fetal body mass. The ratio of neonate mass to gestation period (a simple indicator of average daily maternal investment in fetal growth) shows no difference according to placenta type. Differential evolution of placentation is hence presumably linked to immunological factors, parent/offspring conflict and/or genomic imprinting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams, A. P., & Antczak, D. F. (2001). Ectopic transplantation of equine invasive trophoblast. Biology of Reproduction, 64, 753–763.

    PubMed  CAS  Google Scholar 

  • Amoroso, E. C. (1952). Placentation. In A. S. Parkes (Ed.), Marshall’s physiology of reproduction (pp. 127–311). London: Longmans, Green & Co.

    Google Scholar 

  • Amoroso, E. C. (1959). Comparative anatomy of the placenta. Annals of the New York Academic of Sciences, 75, 855–872.

    CAS  Google Scholar 

  • Arnason, U, Adegoke, J. A., Bodin, K, Born, E. W., Esa, Y. B., Gullberg, A, Nilsson, M. A., Short, R V, Xu, X. F., & Janke, A. (2002). Mammalian mitogenomic relationships and the root of the eutherian tree. Proceedings of the National Academy of Sciences of USA, 99, 8151–8156.

    CAS  Google Scholar 

  • Baur, R. (1977). Morphometry of placental exchange area. Advances in Anatomy, Embryology and Cell Biology, 53, 1–65.

    Google Scholar 

  • Baur, R. (1981). Morphometric data and questions concerning placental transfer. Placenta Supplement, 2, 35–44.

    Google Scholar 

  • Benirschke, K, & Miller, C. J. (1982). Anatomical and functional differences in the placenta of primates. Biology of Reproduction, 26, 29–53.

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., & Purvis, A. (2007). The delayed rise of present-day mammals. Nature, 446, 507–512.

    PubMed  CAS  Google Scholar 

  • Burton, G. J., Jauniaux, E., & Charnock-Jones, D. S. (2007). Human early placental development: Potential roles of the endometrial glands. Placenta, 28(Suppl A), S64–S69.

    PubMed  Google Scholar 

  • Butler, H. (1964). The reproductive biology of a strepsirhine (Galago senegalensis senegalensis). International Review of General and Experimental Zoology, 1, 241–296.

    Google Scholar 

  • Butler, H. (1982). The placental and fetal membranes of the Strepsirhini and Haplorhini. In D. E. Haines (Ed.), The Lesser Bushbaby (Galago) as an animal model: Selected topics (pp. 183–187). Boca Raton: CRC Press.

    Google Scholar 

  • Carter, A. M. (1999). Classics revisited – J.P Hill on placentation in primates. Placenta, 20, 513–517.

    PubMed  CAS  Google Scholar 

  • Carter, A. M. (2001). Evolution of the placenta and fetal membranes seen in the light of molecular phylogenetics. Placenta, 2, 800–807.

    Google Scholar 

  • Carter, A. M. (2005). Placentation in an American mole, Scalopus aquaticus. Placenta, 26, 597–600.

    PubMed  CAS  Google Scholar 

  • Carter, A. M., & Enders, A. C. (2004). Comparative aspects of trophoblast development and placentation. Reproductive Biology and Endocrinology, 2, 1–15.

    Google Scholar 

  • Carter, A. M., Enders, A. C., Kunzle, H., Oduor-Okelo, D., & Vogel, P. (2004). Placentation in species of phylogenetic importance: The Afrotheria. Animal Reproduction Science, 82–83, 35–48.

    PubMed  Google Scholar 

  • Carter, A. M., & Mess, A. (2007). Evolution of the placenta in eutherian mammals. Placenta, 28, 259–262.

    PubMed  CAS  Google Scholar 

  • Cifelli, R. L., Rowe, T. B., Luckett, W. P., Banta, J., Reyes, R., & Howes, R. I. (1996). Fossil evidence for the origin of the marsupial pattern of tooth replacement. Nature, 379, 715–718.

    CAS  Google Scholar 

  • Douady, C. J., Chatelier, P. I., Madsen, O., de Jong W. W., Catzeflis, F, Springer, M. S., & Stanhope, M. J. (2002). Molecular phylogenetic evidence confirming the Eulipotyphla concept and in support of hedgehogs as the sister group to shrews. Molecular Phylogenetics and Evolution, 25, 200–209.

    PubMed  CAS  Google Scholar 

  • Eisenberg, J. F. (1981). The mammalian radiations: An analysis of trends in evolution, adaptation and behaviour. London: Athlone Press.

    Google Scholar 

  • Elliot, M., & Crespi, B. J. (2006). Placental invasiveness mediates the evolution of hybrid inviability in mammals. American Naturalist, 168, 114–120.

    PubMed  Google Scholar 

  • Enders, A. C., & Carter, A. M. (2004). What can comparative studies of placental structure tell us? A review. Placenta Supplement A, 25, S3–S9.

    CAS  Google Scholar 

  • Faber, J. J., Thornburg, K. L., & Binder, N. D. (1992). Physiology of placental transfer in mammals. American Zoologist, 32, 343–354.

    Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.

    Google Scholar 

  • Freyer, C., Zeller, U., & Renfree, M. B. (2003). The marsupial placenta: A phylogenetic analysis. Journal of Experimental Zoology, 299A, 59–77.

    Google Scholar 

  • Gérard, P. (1932). Études sur l’ovogenèse et l’ontogenèse chez les lémuriens du genre Galago. Archives of Biology, 43, 93–151.

    Google Scholar 

  • Goetz, R. (1936). Studien zur Placentation der Centetiden. I. Eine Neuuntersuchung der Centetes Placenta. Zeitschrift Fur Anatomie Und Entwicklungsgeschichte, 106, 315–342.

    Google Scholar 

  • Goodman, M. (1961). The role of immunological differences in the phyletic development of human behavior. Human Biology, 33, 131–162.

    CAS  Google Scholar 

  • Grosser, O. (1909). Vergleichende Anatomie und Entwicklungsgeschichte der Eihäute und der Placenta. Vienna: Wilhelm Braumüller.

    Google Scholar 

  • Grosser, O. (1927). Frühentwicklung, Eihautbildung und Placentation des Menschen und der Säugetiere. Munich: J.F. Bergmann.

    Google Scholar 

  • Haig, D. (1993). Genetic conflicts in human pregnancy. Quarterly Review of Biology, 68, 495–532.

    PubMed  CAS  Google Scholar 

  • Haig, D. (1996a). Gestational drive and the green-bearded placenta. Proceedings of the National Academy of Sciences of USA, 93, 6547–6551.

    CAS  Google Scholar 

  • Haig, D. (1996b). Placental hormones, genomic imprinting, and maternal-fetal communication. Journal of Evolution Biology, 9, 357–380.

    CAS  Google Scholar 

  • Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.

    Google Scholar 

  • Hill, J. P. (1932). The developmental history of the primates. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 221, 45–178.

    Google Scholar 

  • Hill, J. P. (1965). On the placentation of Tupaia. Journal of Zoology London, 146, 278–304.

    Article  Google Scholar 

  • Hubrecht, A. A. W. (1889). Studies in mammalian embryology. I. The placentation of Erinaceus europaeus, with remarks on the phylogeny of the placenta. Quarterly Journal of Microscopical Sciences, 30, 283–404.

    Google Scholar 

  • Hubrecht, A. A. W. (1897). Relations of Tarsius to the lemurs and apes. Science, 5, 550–551.

    PubMed  CAS  Google Scholar 

  • Hubrecht, A. A. W. (1898). Über die Entwicklung der Placenta von Tarsius und Tupaia, nebst Bemerkungen über deren Bedeutung als haemopoeitische Organe. Proceedings of the International Congress of Zoology, 4, 345–411.

    Google Scholar 

  • Hubrecht, A. A. W. (1908). Early ontogenetic phenomena in mammals and their bearing on our interpretation of the phylogeny of the vertebrates. Quarterly Journal of Microscopical Sciences, 53, 1–181.

    Google Scholar 

  • Hudelot, C., Gowri-Shankar, V., Jow, H., Rattray, M., & Higgs, P. G. (2003). RNA-based phylogenetic methods: Application to mammalian RNA sequences. Molecular Phylogenetics and Evolution, 28, 241–252.

    PubMed  CAS  Google Scholar 

  • Janecka, J. E., Miller, W., Pringle, T. H., Wiens, F., Zitzmann, A., Helgen, K. M., Springer, M. S., & Murphy, W. J. (2007). Molecular and genomic data identify the closest living relative of primates. Science, 318, 792–794.

    PubMed  CAS  Google Scholar 

  • Johnson, M., & Everitt, B. (1980). Essential reproduction. Oxford: Blackwell.

    Google Scholar 

  • Kaufmann, P., Luckhardt, M., & Elger, W. (1985). The structure of the tupaia placenta. 2. Ultrastructure. Anatomy and Embryology, 171, 211–221.

    PubMed  CAS  Google Scholar 

  • Kielan-Jaworowska, Z. (1979). Pelvic structure and nature of reproduction in Multituberculata. Nature, 277, 402–403.

    PubMed  CAS  Google Scholar 

  • Kihlström, J. E. (1972). Period of gestation and body weight in some placental mammals. Comparative Biochemistry and Physiology, 43A, 673–679.

    Google Scholar 

  • King, B. F. (1984). The fine structure of the placenta and chorionic vesicles of the bush baby, Galago crassicaudatus. American Journal of Anatomy, 169, 101–116.

    PubMed  CAS  Google Scholar 

  • King, B. F. (1986). Morphology of the placenta and fetal membranes. In W. R. Dukelow & J. Erwin (Eds.), Comparative primate biology. Volume 3: Reproduction and development (pp. 311–331). New York: Alan Liss.

    Google Scholar 

  • King, B. F. (1992). Comparative studies of structure and function in mammalian placentas with special reference to maternal-fetal transfer of iron. American Zoologist, 32, 331–342.

    Google Scholar 

  • King, B. F. (1993). Development and structure of the placenta and fetal membranes of nonhuman primates. Journal of Experimental Zoology, 266, 528–540.

    PubMed  CAS  Google Scholar 

  • Le Gros Clark, W. E. (1959). The antecedents of man. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Leutenegger, W. (1973). Maternal-fetal weight relationships in primates. Folia Primatologica, 20, 280–293.

    Article  CAS  Google Scholar 

  • Lillegraven, J. A., Thompson, S. D., McNab, B. K., & Patton, J. L. (1987). The origin of eutherian mammals. Biological Journal of Linnean Society, 32, 281–336.

    Google Scholar 

  • Lim, N. (2007). Colugo: The flying Lemur of South-East Asia. National University of Singapore: Draco Publishing & Distribution.

    Google Scholar 

  • Luckett, W. P. (1969). Evidence for the phylogenetic relationships of the tree shrews (family Tupaiidae) based on the placenta and foetal membranes. Journal of Reproduction and Fertility Supplement, 6, 419–433.

    Google Scholar 

  • Luckett, W. P. (1974a). The comparative development and evolution of the placenta in primates. Contributions to Primatology, 3, 142–234.

    PubMed  CAS  Google Scholar 

  • Luckett, W. P. (1974b). The phylogenetic relationships of the prosimian primates: Evidence from the morphogenesis of the placenta and foetal membranes. In R. D. Martin, G. A. Doyle, & A. C. Walker (Eds.), Prosimian biology (pp. 475–488). London: Duckworth.

    Google Scholar 

  • Luckett, W. P. (1975). Ontogeny of the fetal membranes and placenta: Their bearing on primate phylogeny. In W. P. Luckett & F. S. Szalay (Eds.), Phylogeny of the primates (pp. 157–182). New York: Plenum Press.

    Google Scholar 

  • Luckett, W. P. (1976). Cladistic relationships among primate higher categories: Evidence of the fetal membranes and placenta. Folia Primatologica, 25, 245–276.

    CAS  Google Scholar 

  • Luckett, W. P. (1977). Ontogeny of amniote fetal membranes and their application to phylogeny. In M. K. Hecht, P. C. Goody, & B. M. Hecht (Eds.), Major patterns in vertebrate evolution (pp. 439–516). New York: Plenum Press.

    Google Scholar 

  • Luckett, W. P. (1980). The use of reproductive and developmental features in assessing tupaiid affinities. In: W. P. Luckett (Ed.), Comparative biology and evolutionary relationships of tree shrews (pp. 245–266). New York: Plenum Press.

    Google Scholar 

  • Luckett, W. P. (1993a). Developmental evidence from the fetal membranes for assessing archontan relationships. In R. D. E. MacPhee (Ed.), Primates and their relatives in phylogenetic perspective (pp. 149–186). New York: Plenum Press.

    Google Scholar 

  • Luckett, W. P. (1993b). Uses and limitations of mammalian fetal membranes and placenta for phylogenetic reconstruction. Journal of Experimental Zoology, 266, 514–527.

    PubMed  CAS  Google Scholar 

  • Luckhardt, M., Kaufmann, P., & Elger, W. (1985). The structure of the tupaia placenta. 1. Histology and vascularization. Anatomy and Embryology, 171, 201–210.

    PubMed  CAS  Google Scholar 

  • Madsen, O., Scally, M., Douady, C. J., Kao, D. J., DeBry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., de Jong, W. W., & Springer, M. S. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature, 409, 610–614.

    PubMed  CAS  Google Scholar 

  • Martin, R. D. (1968). Reproduction and ontogeny in tree-shrews (Tupaia belangeri) with reference to their general behaviour and taxonomic relationships. Zeitschrift Fur Tierpsychologie-Journal of Comparative Ethology, 25, 409–532.

    CAS  Google Scholar 

  • Martin, R. D. (1969). The evolution of reproductive mechanisms in primates. Journal of Reproduction and Fertility Supplement, 6, 49–66.

    Google Scholar 

  • Martin, R. D. (1975). The bearing of reproductive behaviour on strepsirhine phylogeny. In W. P. Luckett & F. S. Szalay (Eds.), Phylogeny of the primates: A multidisciplinary approach (pp. 265–297). New York: Plenum Press.

    Google Scholar 

  • Martin, R. D. (1976). A zoologist’s view of research on reproduction. Symposia of the Zoological Society of London, 40, 283–319.

    Google Scholar 

  • Martin, R. D. (1989). Size, shape and evolution. In M. Keynes (Ed.), Evolutionary studies – a centenary celebration of the life of Julian Huxley (pp. 96–141). London: Eugenics Society.

    Google Scholar 

  • Martin, R. D. (1990). Primate origins and evolution: A phylogenetic reconstruction. London/New Jersey: Chapman Hall/Princeton University Press.

    Google Scholar 

  • Martin, R. D. (2003). Human reproduction: A comparative background for medical hypotheses. Journal of Reproductive Immunology, 59, 111–135.

    PubMed  Google Scholar 

  • Martin, R. D. (2007). The evolution of human reproduction: A primatological perspective. Yearbook of Physical Anthropology, 50, 59–84.

    Google Scholar 

  • Martin, R. D., Genoud, M., & Hemelrijk, C. K. (2005). Problems of allometric scaling analysis: Examples from mammalian reproductive biology. Journal of Experimental Biology, 208, 1731–1747.

    PubMed  Google Scholar 

  • Martin, R. D., & MacLarnon, A. M. (1985). Gestation period, neonatal size and maternal investment in placental mammals. Nature, 313, 220–223.

    Google Scholar 

  • Martin, R. D., & MacLarnon, A. M. (1988). Comparative quantitative studies of growth and reproduction. Symposia of the Zoological Society of London, 60, 39–80.

    Google Scholar 

  • Mess, A., & Carter, A. M. (2006). Evolutionary transformations of fetal membrane characters in Eutheria with special reference to Afrotheria. Journal of Experimental Zoology, 306B, 140–163.

    Google Scholar 

  • Mess, A., & Carter, A. M. (2007). Evolution of the placenta during the early radiation of placental mammals. Comparative Biochemistry and Physiology A, 148, 769–779.

    Google Scholar 

  • Mivart, S. G. J. (1873). On Lepilemur and Cheirogaleus and on the zoological rank of the Lemuroidea. Proceedings of the Zoological Society of London, 1873, 484–510.

    Google Scholar 

  • Mossman, H. W. (1937). Comparative morphogenesis of the fetal membranes and accessory uterine structures. Contributions to Embryology Carnegie Institute of Washington, 26, 129–246.

    Google Scholar 

  • Mossman, H. W. (1953). The genital system and the fetal membranes as criteria for mammalian phylogeny and taxonomy. Journal of Mammals, 24, 289–298.

    Google Scholar 

  • Mossman, H. W. (1987). Vertebrate fetal membranes. London/New Brunswick, NJ: Macmillan/Rutgers University Press.

    Google Scholar 

  • Mossman, H. W. (1991). Classics revisited: Comparative morphogenesis of the fetal membranes and accessory uterine structures. Placenta, 12, 1–5.

    PubMed  CAS  Google Scholar 

  • Müller, F. (1968). Die transitorischen Verschlüsse in der postnatalen Entwicklung der Marsupialia. Acta Anatomica, 71, 581–624.

    PubMed  Google Scholar 

  • Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., & O’Brien, S. J. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–618.

    PubMed  CAS  Google Scholar 

  • Murphy, W. J., Eizirik, E., O’Brien, S. J., Madsen, O., Scally, M., Douady, C. J., Teeling, E., Ryder, A. O., Stanhope, M. J., de Jong, W. W., & Springer, M. S. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294, 2348–2351.

    PubMed  CAS  Google Scholar 

  • Njogu, A., Owiti, G. O., Persson, E., & Oduor-Okelo, D. (2006). Ultrastructure of the chorioallantoic placenta and chorionic vesicles of the lesser bush baby (Galago senegalensis). Placenta, 27, 771–779.

    PubMed  CAS  Google Scholar 

  • Pijnenborg, R., Robertson, W. B., & Brosens, I. (1985). Morphological aspects of placental origin and phylogeny. Placenta, 6, 155–162.

    PubMed  CAS  Google Scholar 

  • Pijnenborg, R., & Vercruysse, L. (2004). Thomas Huxley and the rat placenta in the early debates on evolution. Placenta, 25, 233–237.

    PubMed  CAS  Google Scholar 

  • Pond, C. M. (1983). Parental feeding as a determinant of ecological relationships in Mesozoic vertebrates. Acta Palaeontologica Polonica, 28, 135–140.

    Google Scholar 

  • Portmann A. (1938/1939). Die Ontogenese der Säugetiere als Evolutionsproblem. II. Zahl der Jungen, Tragzeit und Ausbildungsgrad der Jungen bei der Geburt. Biomorphosis, 1, 109–126.

    Google Scholar 

  • Portmann, A. (1939). Nesthocker und Nestflüchter als Entwicklungszustände von verschiedener Wertigkeit bei Vögeln und Säugern. Revue Suisse de Zoologie, 46, 385–390.

    Google Scholar 

  • Portmann, A. (1952). Besonderheiten und Bedeutung der menschlichen Brutpflege. CIBA-Zeitschrift, 11, 4758–4763.

    Google Scholar 

  • Portmann, A. (1959). Einführung in die vergleichende Morphologie (2nd ed.). Basel: Schwabe.

    Google Scholar 

  • Portmann, A. (1962). Cerebralisation und Ontogenese. Medizin Grundlagenforsch, 4, 1–62.

    Google Scholar 

  • Portmann, A. (1965). Über die Evolution der Tragzeit bei Säugetieren. Revue Suisse de Zoologie, 72, 658–666.

    Google Scholar 

  • Potts, M. (1965). Implantation: An electron microscope study with special reference to the mouse. PhD thesis, University of Cambridge.

  • Renfree, M. B. (1981). Marsupials: Alternative mammals. Nature, 293, 100–101.

    PubMed  CAS  Google Scholar 

  • Reng, R. (1977). Die Placenta von Microcebus murinus Miller. Zeitschrift Fur Saugetierkunde, 42, 201–204.

    Google Scholar 

  • Ricklefs, R. E., & Starck, J. M. (1996). Applications of phylogenetically independent contrasts: A mixed progress report. Oikos, 77, 167–172.

    Google Scholar 

  • Rudder, B. C. C. (1979). The allometry of primate reproductive patterns. PhD thesis, University of London.

  • Sacher, G. A., & Staffeldt, E. (1974). Relation of gestation time to brain weight for placental mammals. American Naturalist, 108, 593–615.

    Google Scholar 

  • Samuel, C. A. (1971). The development of pig trophoblast in ectopic sites. Journal of Reproduction and Fertility, 27, 494–495.

    Article  PubMed  CAS  Google Scholar 

  • Samuel, C. A., & Perry, J. S. (1972). The ultrastructure of pig trophoblast transplanted to an ectopic site in the uterine wall. Journal of Anatomy, 113, 139–149.

    PubMed  CAS  Google Scholar 

  • Sharman, G. B. (1976). Evolution of viviparity in mammals. In C. R. Austin & R. V. Short (Eds.), Reproduction in mammals. Book 6: The evolution of reproduction (pp. 32–70). Cambridge: Cambridge University Press.

    Google Scholar 

  • Springer, M. S., Murphy, W. J., Eizirik, E., & O’Brien, S. J. (2003). Placental mammal diversification and the Cretaceous-Tertiary boundary. Proceedings of the National Academy of Sciences of USA, 100, 1056–1061.

    CAS  Google Scholar 

  • Springer, M. S., Stanhope, M. J., Madsen, O., & de Jong, W. W. (2004). Molecules consolidate the placental mammal tree. Trends in Ecology & Evolution, 19, 430–438.

    Google Scholar 

  • Starck, D. (1956). Primitiventwicklung und Plazentation der Primaten. In: H. Hofer, A. H. Schultz, & D. Starck (Eds.), Primatologia. Volume 1 (pp. 723–886). Basel: Karger.

    Google Scholar 

  • Starck, D. (1959). Ontogenie und Entwicklungsphysiologie der Säugetiere. In W. Kükental (Ed.), Handbuch der Zoologie, Volume 8, Part 22,9(7). Berlin: Walter de Gruyter.

    Google Scholar 

  • Starck, D. (1965). Embryologie (2nd ed.). Stuttgart: Thieme Verlag.

    Google Scholar 

  • Steven, D. H. (Ed.). (1975a). Comparative placentation: Essays in structure and function. London: Academic Press.

    Google Scholar 

  • Steven, D. H. (1975b). Anatomy of the placental barrier. In: D. H. Steven (Ed.), Comparative placentation: Essays in structure and function (pp. 25–57). London: Academic Press.

    Google Scholar 

  • Steven, D. H., & Morriss, G. (1975). Development of the foetal membranes. In D. H. Steven (Ed.), Comparative placentation: Essays in structure and function (pp. 58–86). London: Academic Press.

    Google Scholar 

  • Strauss, F. (1978a). The ovoimplantation of Microcebus murinus Miller (Primates, Lemuroidea, Strepsirhini). American Journal of Anatomy, 152, 99–110.

    PubMed  CAS  Google Scholar 

  • Strauss, F. (1978b). Eine Neuuntersuchung der Implantation und Placentation bei Microcebus murinus. Mitteilungen der Naturforschenden Gesellschaft in Bern, 35, 107–119.

    Google Scholar 

  • Tyndale-Biscoe, H. (1973). Life of marsupials. London: Edward Arnold.

    Google Scholar 

  • Vagnoni, K. E., Ginther, O. J., & Lunn, D. P. (1995). Metalloproteinase activity has a role in equine chorionic girdle cell invasion. Biology of Reproduction, 53, 800–805.

    PubMed  CAS  Google Scholar 

  • van der Horst, C. J. (1949). The placentation of Tupaia javanica. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 52, 1205–1203.

    Google Scholar 

  • Vogel, P. (1981). Occurrence and interpretation of delayed implantation in insectivores. Journal of Reproduction and Fertility Supplement, 29, 51–60.

    PubMed  CAS  Google Scholar 

  • Vogel, P. (2005). The current molecular phylogeny of eutherian mammals challenges previous interpretations of placental evolution. Placenta, 26, 591–596.

    PubMed  CAS  Google Scholar 

  • Waddell, P. J., Okada, N., & Hasegawa, M. (1999). Towards resolving the interordinal relationships of placental mammals. Systematic Biology, 48, 1–5.

    PubMed  CAS  Google Scholar 

  • Waddell, P. J., & Shelley, S. (2003). Evaluating placental inter-ordinal phylogenies with novel sequences including RAG1, g-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Molecular Phylogenetics and Evolution, 28, 197–224.

    PubMed  CAS  Google Scholar 

  • Weber, R. (1950). Transitorische Verschlüsse von Fernsinnesorganen in der Embryonalperiode bei Amnioten. Revue Suisse de Zoologie, 57, 19–108.

    Google Scholar 

  • Wildman, D. E., Chen, C., Erez, O., Grossman, L. I., Goodman, M., & Romero, R. (2006). Evolution of the mammalian placenta revealed by phylogenetic analysis. Proceedings of the National Academy of Sciences of USA, 103, 3203–3208.

    CAS  Google Scholar 

  • Wislocki, G. B. (1929). On the placentation of primates, with a consideration of the phylogeny of the placenta. Contributions to Embryology Carnegie Institute of Washington, 20, 51–80.

    Google Scholar 

  • Wood Jones, F. (1929). Man’s place among the mammals. London: Edward Arnold.

    Google Scholar 

  • Wooding, F. B. P., & Flint, A. P. F. (1994). Placentation. In G. E. Lamming (Ed.), Marshall’s physiology of reproduction. Part I. Volume III (pp. 233–460). London: Chapman & Hall.

    Google Scholar 

Download references

Acknowledgements

This paper is an expanded version of a presentation to a Meeting of the Primate Society of Great Britain in December 2007, including additional information. The content of the paper has benefited from discussions with Robert Barton, Anthony Carter, Michel Genoud, Karen Isler, Phyllis Lee, Ann MacLarnon and Ben Rudder. I am grateful to Edna Davion for logistical support and comments on the manuscript. Thanks go to two anonymous reviewers for valuable comments that led to several improvements in the revised version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, R.D. Evolution of Placentation in Primates: Implications of Mammalian Phylogeny. Evol Biol 35, 125–145 (2008). https://doi.org/10.1007/s11692-008-9016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9016-9

Keywords

Navigation