Skip to main content

Advertisement

Log in

Predictive model for delayed graft function based on easily available pre-renal transplant variables

  • IM - ORIGINAL
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

Identification of pre-transplant factors influencing delayed graft function (DGF) could have an important clinical impact. This could allow clinicians to early identify dialyzed chronic kidney disease (CKD) patients eligible for special transplant programs, preventive therapeutic strategies and specific post-transplant immunosuppressive treatments. To achieve these objectives, we retrospectively analyzed main demographic and clinical features, follow-up events and outcomes registered in a large dedicated dataset including 2,755 patients compiled collaboratively by four Italian renal/transplant units. The years of transplant ranged from 1984 to 2012. Statistical analysis clearly demonstrated that some recipients’ characteristics at the time of transplantation (age and body weight) and dialysis-related variables (modality and duration) were significantly associated with DGF development (p ≤ 0.001). The area under the receiver-operating characteristic (ROC) curve of the final model based on the four identified variables predicting DGF was 0.63 (95 % CI 0.61, 0.65). Additionally, deciles of the score were significantly associated with the incidence of DGF (p value for trend <0.001). Therefore, in conclusion, in our study we identified a pre-operative predictive model for DGF, based on inexpensive and easily available variables, potentially useful in routine clinical practice in most of the Italian and European dialysis units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jofre R, Lopez-Gomez JM, Moreno F, Sanz-Guajardo D, Valderrabano F (1998) Changes in quality of life after renal transplantation. Am J Kidney Dis 32:93–100

    Article  CAS  PubMed  Google Scholar 

  2. Hathaway DK, Winsett RP, Johnson C, Tolley EA, Hartwig M, Milstead J et al (1998) Post kidney transplant quality of life prediction models. Clin Transplant 12:168–174

    CAS  PubMed  Google Scholar 

  3. Port FK, Wolfe RA, Mauger EA, Berling DP, Jiang K (1993) Comparison of survival probabilities for dialysis patients vs cadaveric renal transplant recipients. JAMA 270:1339–1343

  4. Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, Jadhav D et al (2011) Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 11:2093–2109

    Article  CAS  PubMed  Google Scholar 

  5. Rezzani R, Rodella L, Bianchi R (1999) Early metabolic changes in peripheral blood cells of renal transplant recipients treated with cyclosporine A. Int J Immunopharmacol 21:455–462

    Article  CAS  PubMed  Google Scholar 

  6. Siedlecki A, Irish W, Brennan DC (2011) Delayed graft function in the kidney transplant. Am J Transplant 11:2279–2296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sollinger HW (1995) Mycophenolatemofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. US Renal Transplant MycophenolateMofetil Study Group. Transplantation 60:225–232

    Article  CAS  PubMed  Google Scholar 

  8. Padiyar A, Augustine JJ, Hricik DE (2009) Induction antibody therapy in kidney transplantation. Am J Kidney Dis 54:935–944

    Article  CAS  PubMed  Google Scholar 

  9. Perico N, Cattaneo D, Sayegh MH, Remuzzi G (2004) Delayed graft function in kidney transplantation. Lancet 364:1814–1827

    Article  PubMed  Google Scholar 

  10. Shoskes DA, Cecka JM (1998) Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation 66:1697–1701

    Article  CAS  PubMed  Google Scholar 

  11. Ojo AO, Wolfe RA, Held PJ, Port FK, Schmouder RL (1997) Delayed graft function: risk factors and implications for renal allograft survival. Transplantation 63:968–974

    Article  CAS  PubMed  Google Scholar 

  12. Troppmann C, Gillingham KJ, Benedetti E, Almond PS, Gruessner RW, Najarian JS et al (1995) Delayed graft function, acute rejection, and outcome after cadaveric renal transplantation: the multivariate analysis. Transplantation 59:962–968

    Article  CAS  PubMed  Google Scholar 

  13. Yarlagadda SG, Coca SG, Formica RN, Poggio ED, Parikh CR (2009) Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant 24:1039–1047

    Article  PubMed  Google Scholar 

  14. Ojo AO, Hanson JA, Wolfe RA, Leichtman AB, Agodoa LY, Port FK (2000) Long-term survival in renal transplant recipients with graft function. Kidney Int 57:307–313

    Article  CAS  PubMed  Google Scholar 

  15. Ojo AO, Wolfe RA, Held PJ, Port FK, Schmouder RL (1997) Delayed graft function: risk factors and implications for renal allograft survival. Transplantation 63:968–974

    Article  CAS  PubMed  Google Scholar 

  16. Kyllönen LE, Salmela KT, Eklund BH, Halme LE, Höckerstedt KA, Isoniemi HM et al (2000) Long-term results of 1047 cadaveric kidney transplantations with special emphasis on initial graft function and rejection. Transpl Int 13:122–128

    Article  PubMed  Google Scholar 

  17. Koning OH, Ploeg RJ, van Bockel JH, Groenewegen M, van der Woude FJ, Persijn GG et al (1997) Risk factors for delayed graft function in cadaveric kidney transplantation: a prospective study of renal function and graft survival after preservation with University of Wisconsin solution in multi-organ donors. European Multicenter Study Group. Transplantation 63:1620–1628

    Article  CAS  PubMed  Google Scholar 

  18. Irish WD, Ilsley JN, Schnitzler MA, Feng S (2010) Brennan DC.A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am J Transplant 10:2279–2286

    Article  CAS  PubMed  Google Scholar 

  19. Jeldres C, Cardinal H, Duclos A, Shariat SF, Suardi N, Capitanio U et al (2009) Prediction of delayed graft function after renal transplantation. Can UrolAssoc J 3:377–382

    Google Scholar 

  20. Rodrigo E, Miñambres E, Ruiz JC, Ballesteros A, Piñera C, Quintanar J et al (2012) Prediction of delayed graft function by means of a novel web-based calculator: a single-center experience. Am J Transplant 12:240–244

    Article  CAS  PubMed  Google Scholar 

  21. Loverre A, Divella C, Castellano G, Tataranni T, Zaza G, Rossini M et al (2011) T helper 1, 2 and 17 cell subsets in renal transplant patients with delayed graft function. Transpl Int 24:233–242

    Article  CAS  PubMed  Google Scholar 

  22. Zaza G, Rascio F, Pontrelli P, Granata S, Stifanelli P, Accetturo M et al (2014) Karyopherins: potential biological elements involved in the delayed graft function in renal transplant recipients. BMC Med Genomics 7:14

    Article  PubMed Central  PubMed  Google Scholar 

  23. Moore J, Tan K, Cockwell P, Krishnan H, McPake D, Ready A et al (2007) Predicting early renal allograft function using clinical variables. Nephrol Dial Transplant 22:2669–2677

    Article  PubMed  Google Scholar 

  24. Moreira P, Sá H, Figueiredo A, Mota A (2011) Delayed renal graft function: risk factors and impact on the outcome of transplantation. Transplant Proc 43(1):100–105

    Article  CAS  PubMed  Google Scholar 

  25. Gore JL, Pham PT, Danovitch GM, Wilkinson AH, Rosenthal JT, Lipshutz GS et al (2006) Obesity and outcome following renal transplantation. Am J Transplant 6(2):357–363

    Article  CAS  PubMed  Google Scholar 

  26. Vanholder R, Heering P, Loo AV, Biesen WV, Lambert MC, Hesse U et al (1999) Reduced incidence of acute renal graft failure in patients treated with peritoneal dialysis compared with hemodialysis. Am J Kidney Dis 33:934–940

    Article  CAS  PubMed  Google Scholar 

  27. Caliskan Y, Yazici H, Gorgulu N, Yelken B, Emre T, Turkmen A et al (2009) Effect of pre-transplant dialysis modality on kidney transplantation outcome. Perit Dial Int 29:S117–S122

    PubMed  Google Scholar 

  28. Snyder JJ, Kasiske BL, Gilbertson DT, Collins AJ (2002) A comparison of transplant outcomes in peritoneal and hemodialysis patients. Kidney Int 62:1423–1430

    Article  PubMed  Google Scholar 

  29. Rippe B, Simonsen O, Heimbürger O, Christensson A, Haraldsson B, Stelin G et al (2001) Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 59:348–357

    Article  CAS  PubMed  Google Scholar 

  30. Fusshoeller A, Plail M, Grabensee B, Plum J (2004) Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol Dial Transplant 19:2101–2106

    Article  CAS  PubMed  Google Scholar 

  31. Granata S, Zaza G, Simone S, Villani G, Latorre D, Pontrelli P et al (2009) Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genom 10:388

    Article  Google Scholar 

  32. Gesualdo L, Pertosa G, Grandaliano G, Schena FP (1998) Cytokines and bioincompatibility. Nephrol Dial Transplant 13:1622–1626

    Article  CAS  PubMed  Google Scholar 

  33. Pertosa G, Simone S, Ciccone M, Porreca S, Zaza G, Dalfino G et al (2009) Serum fetuin a in hemodialysis: a link between derangement of calcium-phosphorus homeostasis and progression of atherosclerosis? Am J Kidney Dis 53(3):467–474

    Article  CAS  PubMed  Google Scholar 

  34. Zaza G, Pontrelli P, Pertosa G, Granata S, Rossini M, Porreca S et al (2008) Dialysis-related systemic microinflammation is associated with specific genomic patterns. Nephrol Dial Transplant 23:1673–1681

    Article  CAS  PubMed  Google Scholar 

  35. Siedlecki A, Irish W, Brennan DC (2011) Delayed graft function in the kidney transplant. Am J Transplant 11:2279–2296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T et al (2004) Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol 287:F979–F989

    Article  PubMed  Google Scholar 

  37. Li L, Okusa MD (2010) Macrophages, dendritic cells, and kidney ischemia-reperfusion injury. Semin Nephrol 30:268–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Jang HR, Ko GJ, Wasowska BA, Rabb H (2009) The interaction between ischemia-reperfusion and immune responses in the kidney. J Mol Med 87:859–864

    Article  CAS  PubMed  Google Scholar 

  39. Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD (2007) Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 71:619–628

    Article  CAS  PubMed  Google Scholar 

  40. Furuichi K, Wada T, Iwata Y, Kitagawa K, Kobayashi K, Hashimoto H et al (2003) CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 14:2503–2515

    Article  PubMed  Google Scholar 

  41. Jablonski KL, Chonchol M (2013) Vascular calcification in end-stage renal disease. Hemodial Int 17:S17–S21

    Article  PubMed  Google Scholar 

  42. Aitken E, Ramjug S, Buist L, Kingsmore D (2012) The prognostic significance of iliac vessel calcification in renal transplantation. Transplant Proc 44:2925–2931

    Article  CAS  PubMed  Google Scholar 

  43. Goldsmith DJ, Covic A, Sambrook PA, Ackrill P (1997) Vascular calcification in long-term haemodialysis patients in a single unit: a retrospective analysis. Nephron 77:37–43

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Simona Granata and Dr. Paola Tomei (Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy) for their collaboration in collecting the clinical data.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Zaza.

Additional information

Dr. Gianluigi Zaza and Dr. Pietro Manuel Ferraro equally contributed to the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaza, G., Ferraro, P.M., Tessari, G. et al. Predictive model for delayed graft function based on easily available pre-renal transplant variables. Intern Emerg Med 10, 135–141 (2015). https://doi.org/10.1007/s11739-014-1119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-014-1119-y

Keywords

Navigation