Skip to main content

Advertisement

Log in

Efficacy and Safety of Volanesorsen (ISIS 304801): the Evidence from Phase 2 and 3 Clinical Trials

  • Evidence-Based Medicine, Clinical Trials and Their Interpretations (L. Roever , Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To revise the clinical evidence supporting the use of volanesorsen as new lipid-lowering drug and to assess the efficacy and safety of volanesorsen (ISIS 304801) through a systematic review of the literature and a meta-analysis of the available phase 2 and phase 3 clinical studies.

Recent Findings

The meta-analysis of three clinical studies comprising 11 arms (N = l 156 subjects, with 95 in the active-treated arm and 61 in the control one) shows that volanesorsen significantly affects plasma levels of triglycerides (TG) [MD = − 67.90%, 95%CI = − 85.32, − 50.48, P < 0.001], high-density lipoprotein cholesterol (HDL-C) [MD = 40.06%, 95%CI: 32.79, 47.34, P < 0.001], very-low-density lipoprotein cholesterol (VLDL-C) [MD = − 72.90%, 95%CI = − 82.73, − 63.07, P < 0.001], apolipoprotein B (Apo B) [MD = 8%, 95%CI = 2.17, 13.84, P = 0.007], Apo B-48 [MD = − 64.63, 95%CI = − 105.37, − 23.88, P = 0.002], ApoCIII [MD = − 74.83%, 95%CI = − 85.93, − 63.73, P < 0.001], and VLDL ApoCIII [MD = − 83.69%, 95%CI = − 94.08, − 73.29, P < 0.001], without significant impact on LDL-C [MD = 47.01%, 95%CI = − 1.31, 95.33, P = 0.057] levels. Treatment with volanesorsen was associated with an higher risk of injection site reaction (OR = 32.89, 95%CI = 7.97,135,74, P < 0.001) and with an increased risk of upper respiratory tract infections (OR = 10.58, 95%CI = 1.23, 90.93, P < 0.05) when compared to placebo.

Summary

Volanesorsen has a relevant impact on plasma TG and related parameters without affecting LDL cholesterolemia and is associated with an acceptable safety profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Kockx M, Kritharides L. Triglyceride-rich lipoproteins. Cardiol Clin. 2018;36(2):265–75. https://doi.org/10.1016/j.ccl.2017.12.008.

    Article  PubMed  Google Scholar 

  2. Hegele RA, Ginsberg HN, Chapman MJ, Nordestgaard BG, Kuivenhoven JA, Averna M, et al. European atherosclerosis society consensus panel. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2(8):655–66. https://doi.org/10.1016/S2213-8587(13)70191-8.

    Article  CAS  PubMed  Google Scholar 

  3. Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma triglycerides. J Lipid Res. 2011;52(2):189–206. https://doi.org/10.1194/jlr.R009720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ariza MJ, Rioja J, Ibarretxe D, Camacho A, Díaz-Díaz JL, Mangas A, et al. Spanish Dyslipidemia Registry. Molecular basis of the familial chylomicronemia syndrome in patients from the National Dyslipidemia Registry of the Spanish Atherosclerosis Society. J Clin Lipidol. 2018;12(6):1482–1492.e3. https://doi.org/10.1016/j.jacl.2018.07.013.

    Article  PubMed  Google Scholar 

  5. Vatier C, Vantyghem MC, Storey C, Jéru I, Christin-Maitre S, Fève B, et al. Monogenic forms of lipodystrophic syndromes: diagnosis, detection, and practical management considerations from clinical cases. Curr Med Res Opin. 2019;35(3):543–52. https://doi.org/10.1080/03007995.2018.1533459.

    Article  CAS  PubMed  Google Scholar 

  6. Esparza MI, Li X, Adams-Huet B, Vasandani C, Vora A, Das SR, et al. Very severe hypertriglyceridemia in a large US County health care system: associated conditions and management. J Endocr Soc. 2019;3(8):1595–607. https://doi.org/10.1210/js.2019-00129Update estimation of severe hypertrglyceridemia in a large population cohort.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cicero AFG, Landolfo M, Ventura F, Borghi C. Current pharmacotherapeutic options for primary dyslipidemia in adults. Expert Opin Pharmacother. 2019;20(10):1277–88. https://doi.org/10.1080/14656566.2019.1604687.

    Article  PubMed  Google Scholar 

  8. Shukla V, Seoane-Vazquez E, Fawaz S, Brown L, Rodriguez-Monguio R. The landscape of cellular and gene therapy products: authorization, discontinuations, and cost. Hum Gene Ther Clin Dev. 2019. https://doi.org/10.1089/humc.2018.201.

  9. Fogacci F, Cicero AF. Gene targeting for chylomicronemia syndrome: the brave new world. Atherosclerosis. 2018;269:254–5. https://doi.org/10.1016/j.atherosclerosis.2017.12.017.

    Article  CAS  PubMed  Google Scholar 

  10. Norata GD, Tibolla G, Catapano AL. Gene silencing approaches for the management of dyslipidaemia. Trends Pharmacol Sci. 2013;34(4):198–205. https://doi.org/10.1016/j.tips.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  11. Norata GD, Tsimikas S, Pirillo A, Catapano AL. Apolipoprotein C-III: From pathophysiology to pharmacology. Trends Pharmacol Sci. 2015;36(10):675–87. https://doi.org/10.1016/j.tips.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  12. Paik J, Duggan S. Volanesorsen: First Global Approval. Drugs. 2019;79(12):1349–54. https://doi.org/10.1007/s40265-019-01168-z.

    Article  CAS  PubMed  Google Scholar 

  13. Strilchuk L, Fogacci F, Cicero AF. Safety and tolerability of injectable lipid-lowering drugs: an update of clinical data. Expert Opin Drug Saf. 2019;18(7):611–21. https://doi.org/10.1080/14740338.2019.1620730.

    Article  PubMed  Google Scholar 

  14. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. https://doi.org/10.1136/bmj.b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fogacci F, Banach M, Mikhailidis DP, Bruckert E, Toth PP, Watts GF, et al. Safety of red yeast rice supplementation: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2019;143:1–16. S1043–6618(19)30317–2. https://doi.org/10.1016/j.phrs.2019.02.028.

    Article  CAS  PubMed  Google Scholar 

  16. Fogacci S, Fogacci F, Banach M, Michos ED, Hernandez AV, Lip GYH, et al. Vitamin D supplementation and incident preeclampsia: A systematic review and meta-analysis of randomized clinical trials. Clin Nutr. 2019. https://doi.org/10.1016/j.clnu.2019.08.015.

  17. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.0. 2. 2009. Chichester: John Wiley and Sons Ltd. Ref Type: Report; 2010.

    Google Scholar 

  18. Fogacci F, Grassi D, Rizzo M, Cicero AFG. Metabolic effect of berberine-silymarin association: a meta-analysis of randomized, double-blind, placebo-controlled clinical trials. Phytother Res. 2019;33(4):862–70. https://doi.org/10.1002/ptr.6282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6. https://doi.org/10.1136/bmj.39489.470347.AD.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Borenstein M, Hedges L, Higgins J, Rothstein H. Comprehensive meta-analysis version 3. Englewood: Biostat; 2005. p. 104.

    Google Scholar 

  21. Follmann D, Elliott P, Suh I, Cutler J. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol. 1992;45(7):769–73.

    Article  CAS  PubMed  Google Scholar 

  22. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. https://doi.org/10.1186/1471-2288-14-135.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Melsen WG, Bootsma MC, Rovers MM, Bonten MJ. The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses. Clin Microbiol Infect. 2014;20:123–9. https://doi.org/10.1111/1469-0691.12494.

    Article  CAS  PubMed  Google Scholar 

  24. Fogacci F, Ferri N, Toth PP, Ruscica M, Corsini A, Cicero AFG. Efficacy and safety of Mipomersen: a systematic review and meta-analysis of randomized clinical trials. Drugs. 2019;79(7):751–66. https://doi.org/10.1007/s40265-019-01114-z.

    Article  CAS  PubMed  Google Scholar 

  25. Haenszel W, Hon NB. Statistical approaches to the study of cancer with particular reference to case registers. J Chronic Dis. 1956;4(6):589–99.

    Article  CAS  PubMed  Google Scholar 

  26. Sahebkar A, Pirro M, Reiner Ž, Cicero AF, Simental-Mendia L, Simental-Mendia LE. A systematic review and meta-analysis of controlled trials on the effects of statin and fibrate therapies on plasma Homocysteine levels. Curr Med Chem. 2016;23(39):4490–503.

    Article  CAS  PubMed  Google Scholar 

  27. Duval S, Tweedie R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    Article  CAS  PubMed  Google Scholar 

  28. Witztum JL, Gaudet D, Freedman SD, Alexander VJ, Digenio A, Williams KR, et al. Volanesorsen and triglyceride levels in familial Chylomicronemia syndrome. N Engl J Med. 2019;381(6):531–42. https://doi.org/10.1056/NEJMoa1715944Main trial demonstrating the volanesorsen efficacy and safety in FCS patients.

    Article  CAS  PubMed  Google Scholar 

  29. Digenio A, Dunbar RL, Alexander VJ, Hompesch M, Morrow L, Lee RG, et al. Antisense-mediated lowering of plasma Apolipoprotein C-III by Volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care. 2016;39(8):1408–15. https://doi.org/10.2337/dc16-0126.

    Article  CAS  PubMed  Google Scholar 

  30. Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, et al. Antisense inhibition of Apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373(5):438–47. https://doi.org/10.1056/NEJMoa1400283.

    Article  CAS  PubMed  Google Scholar 

  31. Chyzhyk V, Brown AS. Familial chylomicronemia syndrome: A rare but devastating autosomal recessive disorder characterized by refractory hypertriglyceridemia and recurrent pancreatitis. Trends Cardiovasc Med. 2019. https://doi.org/10.1016/j.tcm.2019.03.001.

  32. Ganda OP, Bhatt DL, Mason RP, Miller M, Boden WE. Unmet need for adjunctive dyslipidemia therapy in hypertriglyceridemia management. J Am Coll Cardiol. 2018;72(3):330–43. https://doi.org/10.1016/j.jacc.2018.04.061.

    Article  PubMed  Google Scholar 

  33. Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371(1):32–41. https://doi.org/10.1056/NEJMoa1308027.

    Article  CAS  PubMed  Google Scholar 

  34. TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22–31. https://doi.org/10.1056/NEJMoa1307095.

    Article  CAS  Google Scholar 

  35. Bernelot Moens SJ, van Capelleveen JC, Stroes ES. Inhibition of ApoCIII: the next PCSK9? Curr Opin Lipidol. 2014;25(6):418–22. https://doi.org/10.1097/MOL.0000000000000130.

    Article  CAS  PubMed  Google Scholar 

  36. Ooi EM, Barrett PH, Chan DC, Watts GF. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci (Lond). 2008;114(10):611–24. https://doi.org/10.1042/CS20070308.

    Article  CAS  Google Scholar 

  37. Wyler von Ballmoos MC, Haring B, Sacks FM. The risk of cardiovascular events with increased apolipoprotein CIII: A systematic review and meta-analysis. J Clin Lipidol. 2015;9(4):498–510. https://doi.org/10.1016/j.jacl.2015.05.002An interesting meta-analysis linking the apoCIII plasma level and cardiovascular risk.

    Article  PubMed  Google Scholar 

  38. Arca M, Hsieh A, Soran H, Rosenblit P, O'Dea L, Stevenson M. The effect of volanesorsen treatment on the burden associated with familial chylomicronemia syndrome: the results of the ReFOCUS study. Expert Rev Cardiovasc Ther. 2018;16(7):537–46. https://doi.org/10.1080/14779072.2018.1487290.

    Article  CAS  PubMed  Google Scholar 

  39. Ahmad Z, Banerjee P, Hamon S, Chan KC, Bouzelmat A, Sasiela WJ, et al. Inhibition of Angiopoietin-like protein 3 with a monoclonal antibody reduces triglycerides in hypertriglyceridemia. Circulation. 2019;140(6):470–86. https://doi.org/10.1161/CIRCULATIONAHA.118.039107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Gusarova V, Banfi S, Gromada J, Cohen JC, Hobbs HH. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res. 2015;56(7):1296–307. https://doi.org/10.1194/jlr.M054882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyers CD, Tremblay K, Amer A, Chen J, Jiang L, Gaudet D. Effect of the DGAT1 inhibitor pradigastat on triglyceride and apoB48 levels in patients with familial chylomicronemia syndrome. Lipids Health Dis. 2015;14:8. https://doi.org/10.1186/s12944-015-0006-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stroes E, Moulin P, Parhofer KG, Rebours V, Löhr JM, Averna M. Diagnostic algorithm for familial chylomicronemia syndrome. Atheroscler Suppl. 2017;23:1–7. https://doi.org/10.1016/j.atherosclerosissup.2016.10.002A practical approach to detect FCS in clinical practice.

    Article  PubMed  Google Scholar 

Download references

Funding

The present paper was written independently; no company or institution supported it financially. No professional writer was involved in the preparation of this meta-analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arrigo F. G. Cicero.

Ethics declarations

Conflict of Interest

Federica Fogacci has served as a consultant to Mylan; Danilo Giuseppe Norata reports grants from Pfizer, Amgen, Alnylam, and Sanofi; Peter P. Toth reports personal fees from Amgen, Amarin, Kowa, Novo Nordisk, Resverlogix, Regeneron, and Sanofi; Marcello Arca reports grants from Akcea/Ionis; Arrigo F.G. Cicero has given talks, furnished scientific consultancies, and/or participated in trials sponsored by Amgen, Angelini, Menarini, and Mylan.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Evidence-Based Medicine, Clinical Trials and Their Interpretations

Electronic Supplementary Material

ESM 1

(DOC 2326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fogacci, F., Norata, G.D., Toth, P.P. et al. Efficacy and Safety of Volanesorsen (ISIS 304801): the Evidence from Phase 2 and 3 Clinical Trials. Curr Atheroscler Rep 22, 18 (2020). https://doi.org/10.1007/s11883-020-00836-w

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-020-00836-w

Keywords

Navigation